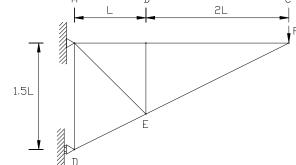
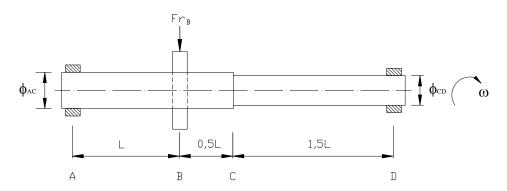
ESCUELA UNIVERSITARIA DE DISEÑO INDUSTRIAL


SISTEMAS MECÁNICOS (1^{er} PARCIAL) (15 de septiembre de 2010)

Cuestiones:


- 1. Ensayo de Tracción Unidireccional. Parámetros característicos. (1 punto)
- 2. Tensión normal debida a la flexión. Ley de Navier. (0,75 puntos)
- 3. Torsión en prismas de sección no circular. (1 punto)
- 4. Principales criterios de fallo estático. Hipótesis y consideraciones aplicadas. (1,5 punto)

Problemas:

- 1. Suponiendo que en la estructura reticulada de la figura, todas las articulaciones y apoyos son perfectos, calcule: (2,75 A B Puntos)
 - i. Grado de hiperestaticidad.
 - ii. Reacciones en los apoyos.
 - iii. Solicitaciones en las distintas barras.
 - iv. Desplazamiento vertical del nudo C, suponiendo que todas las barras tienen la misma sección S y están construidas del mismo material.

- 2. El eje rotativo de la figura, de longitud 3L = 900 mm y diámetros $\Phi_{AC} = 37$ mm y $\Phi_{CD} = 33$ mm respectivamente, está apoyado en cojinetes de bolas en sus extremos A y D y está girando a 150 r.p.m, soportando una carga radial constante $Fr_B = 550$ kg en la sección B situada a una distancia L del extremo A. (3 puntos)
 - i. Reacciones en los cojinetes de apoyo.
 - ii. Diagrama de solicitaciones.
 - iii. Duración del elemento en horas, suponiendo que está construido en acero AISI 1035, con una tensión última de σ_U = 550 MPa y una tensión de fluencia σ_F = 460 MPa. Despréciense los efectos de concentración de tensiones y para el cálculo del factor de acabado superficial, considérese que el eje está mecanizado en torno (a = 4,51 y b = -0,265).
 - iv. Diámetro mínimo que debería tener un eje de la misma longitud de sección constante para una duración no inferior a 10⁵ horas girando a 150 rpm.

