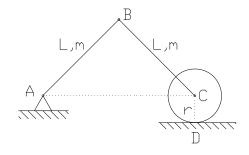

ESCUELA UNIVERSITARIA DE DISEÑO INDUSTRIAL

TEORÍA DE MÁQUINAS

(1 de septiembre de 2010)

Cuestiones:

1. Criterio de Grübler. Determinar el número de grados de libertad del siguiente mecanismo plano: (0,5 puntos)



- 2. Levas. Aplicaciones. Principales limitaciones para su aplicación. (0,75 puntos)
- 3. Normalización en engranajes. Indicar mediante un esquema los distintos parámetros necesarios para definir completamente un engranaje, relacionándolos con el módulo. (0,75 puntos)
- Penetración en engranajes. Correcciones. Proponer el número de dientes y las correcciones más adecuadas (si procede) para obtener las siguientes relaciones de transmisión mediante un engrane cilíndrico-recto convencional: (Ángulo de presión ψ=20°) (0,5 puntos)

$$\mu = 1.5$$
; $\mu = \frac{45}{30}$; $\mu = \frac{815}{333}$; $\mu = \frac{15}{73}$

Problemas:

- 1. Para el mecanismo biela-manivela de la figura, calcule: (2,5 puntos):
 - i. Grados de libertad del mecanismo.
 - ii. Velocidad angular de la barra AB, ω_{AB} , suponiendo que la rueda CD gira con velocidad angular constante ω_{CD} constante.
 - iii. Momento M a aplicar en A para que el sistema permanezca en reposo, despreciando la masa de la rueda CD.
 - iv. Reacciones en las articulaciones del mecanismo (en las condiciones del apartado iii).

2. Diseñar un cuadrilátero articulado capaz de reproducir la función $y=e^x$, variando x entre 0 y 3, empleando el método de Chebyshev para la elección de los puntos de precisión. Sea $\phi_0=45^\circ$, $\Delta\phi=90^\circ$, $\psi_0=45^\circ$, $\Delta\psi=110^\circ$, longitud del elemento fijo $r_1=1$. (2,5 puntos)