Final Year Project Master's Degree

University of La Coruña and Technical University of Sofia

Computer-Aided Design of Platform and Cab for a Car Driving Simulator.

Author: Tsvetozar Yordanov Supervisor: Miguel Ángel Naya June 2004

Objective of the Project

 The design of several of the sub-systems of a mid-level driving simulator. This would include:

- Problem identification and definition
- Choice of hardware for the main sub-systems of the simulator;
- Preparation of 3D models for these items;
- Design of a supporting structure;
- Analysis and optimization of the frame;

Introduction to simulation

Definition of Simulation Areas of Application of Simulation -study of and experimentation with complex systems; -verification of analytical solutions; -training and evaluation of personnel; -experimentation with new designs prior to *implementation;*

The Driving Simulator

- Complete control of environmental factors.
- Cost-effective for set-up and data collection.
- Safe environment for testing.
- Dynamic driving environment with workload and tasks similar to actual driving.

Classification of Driving Simulators

• High-level;

• Mid-level;

• Low-level;

Problem Identification and Definiftion

• Recognition of a need for a driving simulator

Explore the possibilities and the robustness of the developed by the Mechanical Engineering Laboratory multibody dynamics formulations.
Offer a competitive, efficient and low-cost tool to driving schools.

Problem Identification and Definition <u>Definition of the problem.</u>

- Minimized overall dimensions and weight;
- A six degree-of-freedom motion base, capable of accelerations between 0.5 and 2g;

- A high quality visual system for full immersion in the simulation;

- Sound system, control units and seat;
- Supporting structure;

Problem Identification and Definiftion

Functional Analysis System Technique

Choice of a Motion Base

Six Degree-of-Freedom Motion Bases

- Serial Mechanisms;
- Parallel Mechanisms the Stewart Platform;

Hydraulic Actuator Series 6DOF9000H Electric Actuators; DSMP608 electric

Choice of Control Units

• Force Feedback Wheel and Pedals

PC with Pentium[®] 166+ MHz (or compatible processor) 5. Four programmable buttons Windows[®] 98, Me, 2000, XP 1. Full-size, 10-inch racing wheel Mac[®] OS X 10.2.3 or later Rubber hand grips Force feedback 32 MB RAM technology (inside) Two wheel 20 MB available hard drive space mounted clear shifters CD-ROM drive Dual damping system · Available USB Port 7. Gas and brake pedals

R. Gas and brake pedals
8. Weighted pedals base
9. Textured floorboard

Choice of a Visual System

Primary Visual System
 Projection Screens;
 Display Systems;
 The Head Mounted Display;
 Secondary Display

Choice of a Seat

- The Recaro Mobility LXF Seat
 - Ergonomics;
 - Dimensions;
 - Price;

Design of the supporting structure

- Determination of basic dimensions;
- Simulator model;
- Analyses procedures followed and results;
- Optimization of the designed structure;

Design and Modeling of the Supporting Structure

- Determination of the dimensions for the frame and platforms.
 - Overall dimensions of the parts to be mounted;
 - Ergonomic requirements and anthropometric data for a standard population;

The Simulator Model

- The model of the frame
- The simulator assembly

Analysis: Model Meshing

- Type of Elements Used for the Finite Elements Model.
 - Thin Shell Elements surface for mes
 - Lumped Mass Elements;
 - Rigid Bar Elements;
 - Surface Thickness
- Material Properties
- Model Meshing.

Analysis: Boundary Conditions

- Application of restraints.
- Loading conditions maneuvers performed.
 - Severe braking;
 - 180°-degree turn;

Analysis: Results

• The severe braking maneuver. - Stress values-criterion is $\sigma \leq \sigma_{yield}/2(\sigma \leq 137.5 \text{N/mm}^2)$ - Displacement values

Analysis: Results

• The 180°-degree turn maneuver

- Stress values-criterion is $\sigma \leq \sigma_{yield}/2(\sigma \leq 137.5 \text{N/mm}^2)$
- Displacement Values

Analysis: Modified Design

- Modifications applied.
- The 180°-degree turn maneuver.
 - stresses;
 - displacements;

Analysis: Further Modifications

- Modifications applied.
- The 180°-degree turn maneuver.
 - stresses;
 - displacements;

Optimization

- Geometry-based math programing redesign.
- Redesign parameters.
- Stress limit 137.5 N/mm².
- Displacement limit
- Design goal minimization of mass.

Parameter	Initial value	Maximal value	Minimal value
Bar width	80mm	88mm	72mm
Rib width	100mm	110mm	90mm
Platform thickness	4mm	5mm	3mm

Optimization - Simplified

New boundary conditions.

- Removing the lumped mass elements;
- Applying distributed forces in place of the weights of the parts;
- Results.
 - First iteration;
 - Last iteration;

Preliminary Price Estimate

Item	Quantity	Price in Euro	Mass in kg
Motion base	1	55500	58
Wheel and pedals	1	80	0.4
Head Mounted Display	1	1795	0.155
Head Tracker	1	2195	N/A
Display	1	410	4.4
Seat	1	450	6
Steel channels	5.277m	307	34
(80mmx45mmx6mm)			
Steel channels	0.6m	27	1.2
(60mmx30mmx3mm)			
Steel plate (4mm)	0.8m ²	96.6	24.8
Steel plate (6mm)	0.05m ²	12	2.2
Composite plate (ayrlite)	0.36m ²	130	1.2155
Steel tube	0.62m	11	2.28
Total	N/A	61013.6	134.6505

Conclusions

- The design of a driving simulator would offer a multitude of opportunities for investigation and research;
- A preliminary solution for an economical, yet effective driving simulator has been reached;
- The I-Deas 10 NX Series CAD software has been found to offer a wide range of modeling and simulation capabilities;
- The performed analysis showed that the loading conditions are much more demanding when angular accelerations are dominating.
- A feasible solution for the platform was obtained;
- The variation of the parameters during optimization was found to have negligible effect on performance;