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Abstract
Sensitivity analysis represents a powerful tool for the optimization of multibody system dy-
namics. The performance of a gradient-based optimization algorithm is strongly tied to the
dynamic and the sensitivity formulations considered. The accuracy and efficiency are crit-
ical to any optimization problem, thus they are key factors in the selection of the dynamic
and sensitivity analysis approaches used to compute an objective function gradient. Semi-
recursive methods usually outperform global methods in terms of computational time, even
though they involve sometimes demanding recursive procedures. Semi-recursive methods
are well suited to be combined with different constraints enforcement schemes as the aug-
mented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-
P), taking advantage of the robustness, accurate fulfillment of constraint equations and the
low computational burden. The sensitivity analysis of the semi-recursive ALI3-P formula-
tion is studied in this document by means of the direct differentiation method. As a result, a
semi-recursive ALI3-P sensitivity formulation is developed for an arbitrary reference point
selection, and then two particular versions are unfolded and implemented in the general
purpose multibody library MBSLIM, using as reference point the center of mass (RTdyn0)
or the global origin of coordinates (RTdyn1). Besides, the detailed derivatives of the recur-
sive terms are provided, which will be useful not only for the direct sensitivity formulation
presented herein, but also for other sensitivity formulations relying on the same recursive
expressions. The implementation has been tested in two numerical experiments, a five-bar
benchmark problem and a buggy vehicle.
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Nomenclature

Symbols
z Positions of relative coordinates
q Positions of natural or fully-Cartesian

coordinates
ρ Sensitivity parameters
f Force
n Torque
rj Global position of a point
ri Global position of the reference point of body

i

ri
G Global position of the center of mass of body

i

r̄i
j Local position of a point j in body i

vj Global position of a vector j

ωi Angular velocity of body i

mi Mass of body i

J̄G
i Local inertia tensor

JG
i Global inertia tensor

Ai Rotation matrix of body i

Ai−1
i Relative rotation matrix of body i with

respect to body i − 1
bi Recursive velocity term associated to body i

di Recursive acceleration term associated to
body i

Bi Recursive transformation term associated to
body i

Vi Velocity of reference point coordinates of
body i

Dv
i Transformation matrix from the reference

point to the center of mass of body i

Rv Semi-recursive topology matrix
Rv

i Rows of the topology matrix associated to
body i

Mv
i Mass matrix of body i

Qv
i Generalized forces vector of body i

Md Mass matrix referred to joint coordinates
Qd Generalized forces vector referred to joint

coordinates
K Stiffness matrix
C Damping matrix
� Constraints vector
λ Lagrange multipliers
α Diagonal penalty matrix
σ Lagrange multipliers associated to velocity

projections
ς Weighting constant associated to projections
κ Lagrange multipliers associated to

acceleration projections
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P̄ Projection matrix

Superscripts
( )v Arbitrary reference point selection
( )y Center of mass as reference point
( )z Global origin of coordinates as a reference

point
( )∗ Unprojected magnitude
( ){i} Iteration i

Operators
(˙) First time derivative
(¨) Second time derivative
( )′ First derivative with respect to parameters

considering all implicit dependencies
(˜) Skew-symmetric matrix (multi-dimensional

matrix) of a vector (matrix)

( )x = ∂

∂x
Partial derivative with respect to x

( )x̂ Derivative with respect to x including
dependencies on natural coordinates

Ax̂ ⊗ B = [Ax̂1 B . . . Ax̂i
B . . . Ax̂s B

]
Multi-dimensional matrix product in mode 2,
where Ax̂ is the multi-dimensional matrix of
derivatives of matrix A ∈ R

q×r with respect to
vector x ∈R

s and B ∈R
r×t is a matrix. The

result is of size Ax̂ ⊗ B ∈R
q×t×s .

1 Introduction

Since the onset of the first multibody dynamic simulations, the optimization of the dynamic
response of a multibody system has attracted the attention of several multibody researchers,
and, despite the continuous publications of new methods, it is still an open problem. Opti-
mal design and control can be addressed following different paths, such as look-up-tables
based on experiment design, gradient-based methods or stochastic methods, among others.
However, for multibody systems, optimization algorithms that handle objective function
gradients usually perform better than others based on the mere evaluation of the objective
function [1]. For the assessment of a gradient involving the dynamic response of a system,
a sensitivity analysis is required [2–4].

The sensitivity analysis of dynamic formulations can be addressed by means of diverse
differentiation techniques, such as numerical differentiation [5], symbolic differentiation [6],
automatic differentiation [7–10], analytical differentiation [10] or their combinations [11].
Frequently, analytical differentiation methods are the most computationally efficient for the
evaluation of any derivative, even though they are not broadly used in the multibody commu-
nity due to the enormous implementation effort that they require. On the contrary, automatic
and numerical differentiations are much simpler to implement, but this usually comes at the
price of a higher computational expense.

The efficiency of a sensitivity analysis is strongly related to the performance of the dy-
namic simulation. In this regard, the selection of a set of coordinates is not trivial but it
has a direct impact in the composition of the equations of motion (EoM) as well as in the
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computational effort required to solve them [12]. Although there is no set of coordinates or
formulation universally better than others for any mechanism [13], relative coordinates are
usually the most computationally efficient.

Relative or joint coordinate models are based on the type and sequence of joints link-
ing the bodies of a multibody system. The generation of the set of EoM in relative co-
ordinate models can be tackled by means of a semi-recursive composition of mass matri-
ces and generalized force vectors [14–18], or through a fully-recursive technique [19–21].
With the semi-recursive approach, open-loop systems can be readily combined with kine-
matic constraints using one of many well-known constrained multibody dynamic formu-
lations [22]. One efficient, accurate and robust constraint-enforcement scheme is the aug-
mented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-
P). The combination of the semi-recursive method with the ALI3-P formulation, stud-
ied in [16–18, 23, 24], combines the reduced number of coordinates and constraints of
the semi-recursive process with the advantages of the ALI3-P constraint enforcement
scheme.

Two of the most recent works studying the sensitivity analysis of multibody dynamic
formulations refer to the ALI3-P formulation [25, 26]. The first work [25] presents the ap-
plication of the direct differentiation method (DDM) to the ALI3-P equations of motion,
delivering a set of sensitivity systems that can be solved analogously to and jointly with
the dynamic equations. The second work [26] is committed to the application of the con-
tinuous adjoint variable method (AVM) to the ALI3-P equations with the aim of reducing
the computational burden of the sensitivity analysis for large sets of parameters. However,
the sensitivity analysis of semi-recursive ALI3-P formulations has not been addressed yet,
either with a direct or an adjoint approach.

In the current work, the DDM is applied to the semi-recursive ALI3-P equations of mo-
tion following an analytical differentiation procedure both for the differentiation of the sen-
sitivity expressions and for derivatives of kinematic recursive relations and accumulation
procedures. The sensitivity equations reached are analog to those presented in [25], but the
recursive nature, the composition of the equations of motion and the use of relative coordi-
nates make semi-recursive ALI3-P sensitivity formulations intrinsically different.

The main novelty of this work relies on the development of the optimized analytical
derivatives of each dynamic and kinematic term involved in semi-recursive methods. The
expressions of the derivatives are presented for an arbitrary reference point (general ex-
pressions) and also particularized for the most usual choices of reference points, giving
rise to the RTdyn0 formulation (centre of mass as reference point) and RTdyn1 formula-
tion (origin of coordinates as reference point). The effect of the different reference points is
studied in terms of sensitivity to determine if RTdyn1 performs better than RTdyn0 (like it
happens in the dynamics [27]). Moreover, the particular RTdyn0 and RTdyn1 expressions
allow some simplifications which make them more efficient compared to the general expres-
sions.

A rigorous comparison of the herein presented analytical derivatives with automatic dif-
ferentiation may be the objective of a separate work, but the authors do not expect superior
efficiency of automatic differentiation based on their previous experience [10].

The semi-recursive sensitivity analyses developed in this paper have been implemented
as general formulations in the general purpose multibody library MBSLIM [28], which in-
cludes different forward dynamic formulations, inverse dynamics, kinematics and sensitiv-
ity analysis of multibody systems, among other capabilities. The library, originally based
on natural coordinates, now supports kinematic, dynamic and sensitivity analyses of relative
coordinate models.
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This work is structured into 11 sections: Sects. 1 and 2 are devoted to the introduction
and the description of the notation used along the paper; Sect. 3 presents a brief descrip-
tion of the semi-recursive ALI3-P formulation; Sect. 4 covers the development of the set
of semi-recursive ALI3-P sensitivity equations; Sects. 5 and 6 are focused on the analyti-
cal derivatives of the mass matrix and generalized forces vector; the constraint derivatives
involved in this sensitivity formulation are introduced in Sect. 7; Sects. 8 and 9 explore
the derivatives of natural coordinates and the recursive kinematic relations; in Sect. 10, the
semi-recursive ALI3-P sensitivity formulation is tested in two numerical experiments. Fi-
nally, Sect. 11 gathers the main conclusions of the work. Moreover, four additional appen-
dices are included to shed light on the particularization of the general semi-recursive ALI3-P
sensitivity formulation to RTdyn0 and RTdyn1.

This paper is regarded as a continuation of the former paper [24] in which the semi-
recursive ALI3-P formulation is thoroughly described. Here, a brief description of the for-
mulation is presented, while the reader is referred to [24] for further details.

2 Notation

Derivatives in semi-recursive formulations involve several concatenations of matrices and
multi-dimensional matrix products. The explosion of terms leads to large expressions which
can be clarified using the convenient notation and a new rule of differentiation. Let us
consider a model described by z ∈ R

n relative coordinates, with q ∈ R
nq natural (or fully-

Cartesian) coordinates referred to points and vectors, and with ρ ∈ R
p system parameters.

Given a function f depending on z, ż, z̈, q, q̇, q̈ and ρ, the following differentiation rule is
considered:

fx̂ = ∂f

∂q
∂q
∂x

+ ∂f

∂q̇
∂q̇
∂x

+ ∂f

∂q̈
∂q̈
∂x

+ ∂f

∂x
= fqqx + fq̇q̇x + fq̈q̈x + fx, (1)

with x being any of the dependencies of function f . As it was mentioned in the nomencla-
ture, this notation indicates the derivative of a function with respect to x considering all the
explicit dependencies of the function on natural coordinates, and the dependencies of natural
coordinates on x. This notation is also valid for the differentiation of vectors or matrices.

Besides, it is convenient to define the operator (˜) as the skew-symmetric matrix of a
vector. For an arbitrary vector v = [vx vy vz

]T ∈R
3, this function yields

ṽ =
⎡

⎣
0 −vz vy

vz 0 −vx

−vy vx 0

⎤

⎦ . (2)

Similarly, the skew-symmetric multi-dimensional matrix of a matrix A ∈ R
3×n can be

defined as the multi-dimensional matrix Ã ∈ R
3×3×n composed of the skew-symmetric ma-

trices of each column of the matrix A,

Ã = [Ã1 Ã2 . . . Ãn

]
, (3)

where Ai represents the column i of the matrix A.
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3 Description of the multibody formulation1

Let us consider a multibody system composed of nb bodies with nb kinematic joints relating
the motion of the bodies, and n joint coordinates z parameterizing the motion. In the case of
unconstrained open-loop systems, the kinematics of the multibody system can be described
by means of the following set of recursive relations:

Vi = Bv
i Vi−1 + bv

i żi , (4a)

V̇i = Bv
i V̇i−1 + bv

i z̈i + dv
i , (4b)

Bv
i =
[

I r̃i−1 − r̃i

0 I

]
, (4c)

Ḃv
i =
[

0 ˙̃ri−1 − ˙̃ri

0 0

]
, (4d)

dv
i = Ḃv

i Vi−1 + ḃv
i żi , (4e)

wherein Vi = [ ṙT
i ωT

i

]T
, V̇i = [ r̈T

i ω̇T
i

]T
, and with bv

i being a recursive term reliant on
the joint type describing the relative motion between body i and its preceding body (see
Appendix D). The previous relations can be gathered in a matrix form as

V = Rvż, (5)

V̇ = Rvz̈ + Ṙvż. (6)

Applying the virtual power principle to the dynamic equations expressed in terms of refer-
ence point coordinates and considering (5) and (6), the EoM of an unconstrained open-loop
system can be described with the following matrix equation:

(
RvTMvRv

)
z̈ = RvT

(
Qv − MvṘvż

)
, (7)

which can be reformulated as

Mdz̈ = Qd, (8)

where Rv ∈ R
6nb×n is the topology matrix used for the semi-recursive accumulation and

Ṙv ∈ R
6nb×n is its time derivative, Mv ∈ R

6nb×6nb and Qv ∈ R
6nb are, respectively, the mass

matrix and generalized vector of forces referred to reference point coordinates, and Md ∈
R

n×n and Qd ∈ R
n are, respectively, the accumulated mass matrix and generalized forces

vector.
If the mechanism has closed loops or other kinematic relations not described by kine-

matic joints, some constraint equations � ∈ R
m must be added to the open-loop system.

These constraints can be enforced using different formulations. One possibility is to use the
augmented Lagrangian index-3 formulation with projections recently reviewed in [18, 24],

1The semi-recursive ALI3-P formulation is briefly outlined in this section, and the reader is referred to
[24] to gain insight into the composition of the EoM, recursive relations and assembly procedures. The
semi-recursive relations presented can be regarded as a generalization of other works like [19, 29] to
an arbitrary reference point, and the reader might also have useful information in [13, 30] for ALI3-P
formulations. Additional information can be found in [18]
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also used in [13] and originated from [30]. The semi-recursive augmented Lagrangian part
of the formulation takes the form

Mdz̈∗ + �T
ẑ

(
λ∗{i} + α�

)= Qd, (9a)

λ
∗{i}
n+1 = λ

∗{i−1}
n+1 + α�

{i}
n+1; i > 1, (9b)

where α is a diagonal matrix containing the penalty factors associated with the constraints,
n is the time step index and i is the iteration index of the approximate Lagrange multipliers
λ∗

n+1 ∈R
m.

In this formulation, constraints in velocities and accelerations are enforced by means of
velocity and acceleration projections. For the projection of the velocities:

(
P̄ + ς�T

ẑ α�ẑ
)

ż{i} = P̄ż∗ − �T
ẑ

(
σ {i} + ςα�t

)
, (10a)

σ {i} = σ {i−1} + ςα�̇; i > 1, (10b)

where P̄ ∈ R
n×n is a symmetric projection matrix, ς is a weighting constant and σ ∈ R

m

the Lagrange multipliers related to the velocity projection. Observe that the penalty factor
for the velocity projection is actually ςα. The selection of the most convenient projection
matrix and penalty is out of the scope of this work, but there is some previous research about
how to choose these parameters based on the energy conserving or decaying properties of
the projection (see, e.g. [31]).

Analogously, for the acceleration projection,
(
P̄ + ς�T

ẑ α�ẑ
)

z̈{i} = P̄z̈∗ − �T
ẑ

(
κ {i} + ςα

(
�̇ẑż + �̇t

))
, (11a)

κ {i} = κ {i−1} + ςα�̈; i > 1, (11b)

with κ ∈ R
m being the Lagrange multipliers associated with the acceleration projections.

Observe that the same projection matrix and penalty are assumed for the acceleration pro-
jection in order to obtain identical leading matrices for the systems of velocity and acceler-
ation projections, (10a) and (11a), thus reducing the computational time needed for solving
the systems.

This formulation gathers the advantages of relative coordinates modelling, such as the
reduced number of variables and small systems of equations, with the robustness and effi-
ciency of an augmented Lagrangian index-3 formulation.

4 Direct sensitivity analysis

Let us consider an objective function expressed in terms of z, ż, z̈, q, q̇, q̈, λ∗ and ρ, with ρ ∈
R

p being the set of parameters of the system, and also in terms of the Lagrange multipliers
of the velocity and acceleration projections σ and κ ,

ψ =
∫ tF

t0

g
(
z, ż, z̈,q, q̇, q̈,λ∗,σ ,κ,ρ

)
dt. (12)

Considering the differentiation rule (1), the gradient of the objective function ψ can be
expressed as

ψ ′ = ∇ψT =
∫ tF

t0

(
gẑz′ + g ˆ̇zż′ + g ˆ̈zz̈′ + gλ∗λ∗′ + gσ σ ′ + gκκ

′ + gρ

)
dt. (13)
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The unknown sensitivities, i.e. z′, ż′, z̈′, λ∗′, σ ′ and κ ′, can be obtained from the sensi-
tivity analysis of the formulation used to solve the dynamics. The direct differentiation of
the semi-recursive ALI3-P formulation leads to a set of p systems of differential algebraic
equations (DAE) related to the ALI3 part of the dynamics, additional p systems of equa-
tions for the sensitivity of the velocity projections, and p systems for the sensitivities of the
acceleration projections.2

Taking derivatives of (9a), (9b) with respect to the set of parameters of the system ρ, the
following sensitivity equations for the augmented Lagrangian part of the ALI3-P formula-
tion are reached:

[
Mdz̈∗′{i} + Cż∗′{i} + K̄z′{i} + �T

ẑ λ∗′{i}
]

= Q̄ρ, (14a)

λ∗′{i} = λ∗′{i−1} + α�′, (14b)

K̄ = Md
ẑ z̈∗ + �T

ẑẑ

(
λ∗ + α�

)+ �T
ẑ α�ẑ + K, (14c)

Q̄ρ = Qd
ρ̂ − Md

ρ̂ z̈∗ − �T
ẑρ̂

(
λ∗ + α�

)− �T
ẑ α�ρ̂, (14d)

�′ = �ẑz′ + �ρ̂, (14e)

wherein K (equivalent stiffness matrix), C (equivalent damping matrix), K̄ and Md ∈ R
n×n

in (14a)–(14e) are square matrices, while Q̄ρ ∈ R
n×p is a matrix with the same dimensions

of z′{i}. In the calculation of these matrices, the following multi-dimensional matrix-vector
products are used:3 Md

ẑ z̈∗ = Md
ẑ ⊗ z̈∗, �T

ẑẑ (λ∗ + α�) = �T
ẑẑ ⊗ (λ∗ + α�), Md

ρ̂
z̈∗ = Md

ρ̂
⊗ z̈∗

and �T
ẑρ̂ (λ∗ + α�) = �T

ẑρ̂ ⊗ (λ∗ + α�).
The dynamics of an ALI3-P formulation involves the projection of velocities and accel-

erations, and, consequently, this effect has to be included in the sensitivity analysis. Con-
sidering P̄ ∈ R

n×n, a symmetric projection matrix, the sensitivity of the iterative velocity
projections yields:

(
P̄ + ς�T

ẑ α�ẑ
)

ż′ {i} = P̄ż∗′ + P̄′ (ż∗ − ż
)− �T

ẑẑ

(
σ + ςα�̇

)
z′

− �T
ẑρ̂

(
σ + ςα�̇

)− �T
ẑ

(
σ ′ {i} + ςαbρ

)
,

(15a)

σ ′ {i} = σ ′ {i−1} + ςα�̇
′; i > 1, (15b)

with

bρ = �̇ẑz′ + �̇ρ̂ . (16)

In (15a), (15b), the following multi-dimensional matrix–vector products appear:

�T
ẑẑ

(
σ + ςα�̇

)
z′ = (�T

ẑẑ ⊗ (σ + ςα�̇
))

z′,

�T
ẑρ̂

(
σ + ςα�̇

)= �T
ẑρ̂ ⊗ (σ + ςα�̇

)
.

2In [25], Dopico et al. presented the application of the direct differentiation method to an ALI3-P formulation,
and an equivalent procedure is employed here to reach the general expression of the semi-recursive sensitivity
equations. Some intermediate developments and derivations are skipped as long as they are covered in the
mentioned work.
3If the subscript of the multi-dimensional matrix product operator is omitted, the mode of the multi-
dimensional matrix product is 2.
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Following the aforementioned procedure, the sensitivity of the acceleration projections takes
the form:

(
P̄ + ς�T

ẑ α�ẑ
)

z̈′ {i} = P̄z̈∗′ + P̄′ (z̈∗ − z̈
)− �T

ẑẑ

(
κ + ςα�̈

)
z′

− �T
ẑρ̂

(
κ + ςα�̈

)− �T
ẑ

(
κ ′ {i} + ςαcρ

)
,

(17a)

κ ′ {i} = κ ′ {i−1} + ςα�̈
′; i > 1, (17b)

with

cρ = 2�̇ẑż′ + �̈ẑz′ + �̈ρ̂ (18)

and the following multi-dimensional matrix–vector products:

�T
ẑẑ

(
κ + ςα�̈

)
z′ = (�T

ẑẑ ⊗ (κ + ςα�̈
))

z′,

�T
ẑρ̂

(
κ + ςα�̈

)= �T
ẑρ̂ ⊗ (κ + ςα�̈

)
.

Equations (14a)–(14e) provide the sensitivities of the relative coordinates in positions z′,
the sensitivities of the Lagrange multipliers λ∗′ and the sensitivities of the unprojected ve-
locities and accelerations of the states, ż∗′ and z̈∗′. Equations (15a), (15b) use the sensitivities
of the unprojected velocities obtained in (14a)–(14e) to compute the sensitivities of the pro-
jected velocities of the states ż′ and the Lagrange multipliers σ ′. Similarly, equations (17a),
(17b) produce the sensitivities of the projected accelerations from the sensitivities of the
unprojected ones and the Lagrange multipliers sensitivities associated with this projection
κ ′.

5 Mass matrix derivatives

Considering the implicit dependencies of the mass matrix in a given instant of time, its
derivative with respect to a set of sensitivity parameters can be obtained as

dMd

dρ
= Md

ẑ z′ + Md
ρ̂ . (19)

In semi-recursive methods, the mass matrix can be fragmented in blocks with the
form Md

i,j = bvT
i Mv�

i bv
i,j , with bv

i ∈ R
6×nvi being the relative recursive term of joint i,

Mv�
i ∈ R

6×6 the accumulated mass matrix on body i, bv
i,j ∈ R

6×nvj the accumulated rel-
ative recursive term of joint j referred to the reference point of body i, and with nvi

and nvj

the number of coordinates of joints i and j , respectively.
Following the structure of the mass matrix, its derivative with respect to z or ρ using (1)

can be obtained as the assembly of the derivatives of each block, with the form

(
Md

i,j

)

x̂
=
(

bvT
i Mv�

i bv
i,j

)

x̂
=
(

bvT
i

)

x̂
Mv�

i bv
i,j + bvT

i

(
Mv�

i

)

x̂
bv

i,j + bvT
i Mv�

i

(
bv

i,j

)

x̂
, (20)

with x being either z or ρ, depending on which derivative is considered. Derivatives of
relative recursive terms bv

i and bv
i,j depend on the type of joint, while the derivatives of the
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accumulated mass matrix Mv�
i rely on the topology of the mechanism and the derivatives of

the elemental mass matrix of each body and they can be obtained as

(
Mv�

i

)

x̂
=
(

Mv
i +

ni
s∑

s=1

(
Bv

s
TMv�

s Bv
s

))

x̂

=
(

Mv
i

)

x̂
+

ni
s∑

s=1

((
Bv

s
T
)

x̂
Mv�

s Bv
s + Bv

s
T
(

Mv�
s

)

x̂
Bv

s + Bv
s

TMv�
s

(
Bv

s

)

x̂

)
,

(21)

where ni
s is the number of children of body i, and Bv

s ∈ R
6×6 is a recursive transformation

matrix between body s and its preceding body.
The derivative of the elemental mass matrix of a body Mv

i is determined by the reference
point selected. The derivatives of this matrix for the RTdyn0 and RTdyn1 versions are ex-
plained in Appendix A (observe that both approaches involve important simplifications with

respect to generic reference point formulas). Furthermore, the term
(

bvT
i Mv�

i bv
i,j

)

x̂
can be

efficiently computed reusing terms and exploiting multi-dimensional matrix symmetries.

6 Force derivatives

First of all, the elemental force vector for each body can be decomposed into two terms,
one related to each external force applied to the body and the other referred to velocity-
dependent inertia forces:4

Qv
i =

ni
f∑

j=1

Qv(e)
i,j + Qv

i
(I)

, (22a)

Qv(e)
i,j =

[
fj

nG
j + (r̃i

G − r̃i

)
fj

]
, (22b)

Qv
i
(I) =

[ −miω̃iω̃i

(
ri

G − ri

)

−ω̃iJG
i ωi − (r̃i

G − r̃i

) (
miω̃iω̃i

(
ri

G − ri

))
]

. (22c)

Herein, ni
f represents the number of external forces applied to the body i, fj ∈ R

3 is an
external force applied on body i, nG

j ∈ R
3 denotes the equivalent torque of fj on the centre of

mass, ri
G ∈ R

3 is the position of the centre of mass of body i, ri ∈ R
3 identifies the reference

point of body i, ωi ∈ R
3 is the angular velocity of body i and the operator (˜) indicates the

skew-symmetric matrix of a vector of dimension 3, such as in ω̃i ∈ R
3×3. Thanks to this

division, the terms related to each external force fj can be evaluated separately from the
inertial component of the elemental force.

Finally, the elemental force vectors referred to each body (22a)–(22c) have to be assem-
bled in order to build the vector of generalized forces Qd:

Qd
i = RvT

i

(
Qv − MvṘvż

)= bvT
i Qv�

i , (23a)

4The reader is referred to [24] for a more detailed description of the composition of the generalized forces
vector in semi-recursive formulations.
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Qv�
i = Qv

i − Mv
i dv�

i +
ni
s∑

s=1

BvT
s Qv�

s , (23b)

where ni
s is again the number of children of body i, and dv�

i is the recursive accumulation
of the joint-dependent term dv

i following the topology of the mechanism,

dv�
i = dv

i + Bv
i dv�

h . (24)

6.1 Matrix K

The equivalent stiffness matrix K is defined as K = −
(

Qd
)

ẑ
. It can be obtained following

the aforementioned procedure of division of the generalized forces vector. Taking derivatives
on (23a) and (23b) yields

Ki = −
(

Qd
i

)

ẑ
= bvT

i Kv�
i −

(
bvT

i

)

ẑ
Qv�

i , (25a)

Kv�
i = −

(
Qv�

i

)

ẑ
= Kv

i +
(

Mv
i

)

ẑ
dv�

i + Mv
i

(
dv�

i

)

ẑ
+

ni
s∑

s=1

(
BvT

s Kv�
s −

(
BvT

s

)

ẑ
Qv�

s

)
, (25b)

where ni
s is again the number of children of body i. The derivative of the accumulated

kinematic term dv�
i involved in (25b) will be described in Sect. 9.7.

Before addressing the analytical expressions of the elemental force derivatives involved
in (25b), it is convenient to introduce the derivatives of the position and velocity of a point
belonging to body i (fixed in its local reference frame) and the angular velocity. For the sake
of brevity, the final results will be directly used avoiding the intermediate developments:

(
rj

)
z = (ṙj

)
ż = [I r̃i − r̃j

]
Rv

i , (26)

(
ṙj

)
z = d

dt

(
rj

)
z = [0 ˙̃ri − ˙̃rj

]
Rv

i + [I r̃i − r̃j

]
Ṙv

i , (27)

(ωi )ẑ = [0 I
] (

Rv
i

)
ẑ ż = [0 I

]
Ṙv

i − [0 ω̃i

]
Rv

i . (28)

In order to compute (25a) and (25b), Kv
i have to be determined. Taking derivatives of

(22a)–(22c) and applying (26) and (28) gives

Kv
i = −

(
Qv

i

)

ẑ
=

ni
f∑

j=1

Kv(e)
i,j + Kv

i
(I)

, (29a)

Kv(e)
i,j =

⎡

⎣
−
(

fj
)

ẑ

f̃j
([

I r̃i − r̃j

]
Rv

i −
(

ri

)

z

)
−
(

nG
j

)

ẑ
+ (r̃i − r̃j

)(
fj
)

ẑ

⎤

⎦ , (29b)

Kv
i
(I) =

[
tẑ(

r̃i
G − r̃i

)
tẑ − t̃

([
I r̃i − r̃i

G

]
Rv

i −
(

ri

)

z

)
]

+
[

0(
ω̃iJG

i − ˜JG
i ωi

)(
ωi

)

ẑ
+ ω̃i

(
JG

i

)

ẑ
ωi

]

,

(29c)
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where

t = miω̃i

(
ω̃i

(
ri

G − ri

))
, (30a)

tẑ = miω̃iω̃i

([
I r̃i − r̃i

G

]
Rv

i −
(

ri

)

z

)
− mi

(
h̃ − ω̃i

(
r̃i − r̃i

G

))(
ωi

)

ẑ
, (30b)

h = ω̃i

(
ri

G − ri

)
. (30c)

The obtained expressions can be further particularized for a given selection of reference
points. Appendix B covers their reformulation for RTdyn0 and RTdyn1.

6.2 Matrix C

Matrix C can be regarded as a damping matrix since it measures the variation of the gen-
eralized forces vector with the velocities of the relative coordinates, C = − (Qd

)
ˆ̇z. Taking

derivatives on the forces assembly scheme introduced in (23a) and (23b) gives

Ci = bvT
i Cv�

i , (31a)

Cv�
i = Cv

i + Mv
i

(
dv�

i

)

ˆ̇z
+

ni
s∑

s=1

BvT
s Cv�

s , (31b)

with ni
s being the number of children of body i. The derivatives of the term dv�

i with respect
to velocities will be introduced in Sect. 9.6.

Taking derivatives of (22a)–(22c) with respect to ż according to (1) yields

Cv
i = −

(
Qv

i

)

ˆ̇z
=

ni
f∑

j=1

Cv(e)
i,j + Cv

i
(I)

, (32a)

Cv(e)
i,j = −

[
I

r̃j − r̃i

](
fj
)

ẑ
−
[

0(
nG

j

)

ẑ

]

, (32b)

Cv
i
(I) =

⎡

⎣
0 −mi

(
h̃ − ω̃i

(
r̃i − r̃i

G

))

0 ω̃iJG
i − ˜JG

i ωi−mi

(
r̃i

G − r̃i

)(
h̃ − ω̃i

(
r̃i − r̃i

G

))

⎤

⎦Rv
i , (32c)

with h given by (30c). Appendix C includes the particular expressions of matrix C for RT-
dyn0 and RTdyn1.

6.3 Evaluation of Qd
ρ̂

Sensitivity parameters can affect both the magnitude of a single force (e.g. a stiffness coef-
ficient of a spring force) and the topology of the multibody system (e.g. a local coordinate
of a point or vector defining a joint). Differentiating (23a), (23b), the derivative of the gen-
eralized forces vector becomes:

(
Qd

i

)

ρ̂
= bvT

i

(
Qv�

i

)

ρ̂
+
(

bvT
i

)

ρ̂
Qv�

i , (33a)
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(
Qv�

i

)

ρ̂
=
(

Qv
i

)

ρ̂
+
(

Mv
i

)

ρ̂
dv�

i + Mv
i

(
dv�

i

)

ρ̂
+

ni
s∑

s=1

(
BvT

s

(
Qv�

s

)

ρ̂
+
(

BvT
s

)

ρ̂
Qv�

s

)
.

(33b)

The application of the rule of differentiation defined in (1) to the expressions of the
generalized forces vector (22a)–(22c) generates:

(
Qv

i

)

ρ̂
=

ni
f∑

j=1

(
Qv(e)

i,j

)

ρ̂
+
(

Qv
i
(I)
)

ρ̂
, (34a)

(
Qv(e)

i,j

)

ρ̂
=
⎡

⎢
⎣

(
fj
)

ρ̂

f̃j

((
rj

)

ρ
−
(

ri

)

ρ

)
+
(

nG
j

)

ρ̂
+ (r̃j − r̃i

)(
fj
)

ρ̂

⎤

⎥
⎦ , (34b)

(
Qv

i
(I)
)

ρ̂
=
⎡

⎣
tρ̂

(
r̃i

G − r̃i

)
tρ̂ + t̃

((
ri

)

ρ
−
(

ri
G

)

ρ

)
−
(
ω̃iJG

i − ˜JG
i ωi

)(
ωi

)

ρ̂
− ω̃i

(
JG

i

)

ρ̂
ωi

⎤

⎦ ,

(34c)

where

tρ̂ = −miω̃iω̃i

((
ri

G

)

ρ
−
(

ri

)

ρ

)
− mi

(
h̃ − ω̃i

(
r̃i − r̃i

G

))(
ωi

)

ρ̂
, (35)

with t and h given by (30a) and (30a), respectively.
In equation (34a)–(34c), the derivatives of natural coordinates with respect to parame-

ters have the known analytical expressions presented in Sect. 8.3. The partial derivatives of
forces and torques can be directly obtained from their explicit dependencies on the param-
eters and natural coordinates applying the differentiation rule (1). The term

(
JG

i

)
ρ̂

involves
the variation of the global inertia tensor with respect to any set of parameters, for which the
partial derivatives of rotation matrices should be considered (remember that JG

i = Ai J̄G
i AT

i ).
Moreover, the derivative of the angular velocity can be reached by means of different meth-
ods, one of them being the differentiation of the angular part of the recursive equations (4a),

(
ωi

)

ρ̂
=
(
ωi−1

)

ρ̂
+ [03 I3

](
bv

i

)

ρ̂
żi . (36)

Comparing this derivative with the expressions of the stiffness matrix, several analogies
can be observed, both in the elemental derivatives and in the assembly, which makes it
possible to reuse routines of computation for both terms.

7 Constraint derivatives

Derivatives of the constraints vector are ubiquitous in the dynamic solution of any cons-
trained multibody model, and the same occurs on a sensitivity analysis. Constraints can be
expressed in terms of coordinates of points and vectors, and therefore, a transformation from
natural to relative coordinates have to be executed for each constraint derivative. In this re-
gard, two types of derivatives are required in the differentiation of the constraints vector:
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Table 1 Explicit constraint derivatives involved in a sensitivity analysis

�, �̇, �̈ w.r.t. q w.r.t. z w.r.t. ρ

– �q, �̇q, �̈q �z, �̇z, �̈z �ρ , �̇ρ , �̈ρ

w.r.t. q �qq, �̇qq �zq, �̇zq �ρq, �̇ρq

w.r.t. z – �zz, �̇zz �ρz, �̇ρz

Table 2 Natural coordinates
derivatives involved in a
sensitivity analysis

q, q̇, q̈ w.r.t. z w.r.t. ρ

– qz, q̇z, q̈z qρ , q̇ρ , q̈ρ

w.r.t. z qzz, q̇zz qρz, q̇ρz

explicit derivatives (see Table 1), involving explicit dependencies of each constraint equa-
tion; and topological derivatives (see Table 2), related to the variation of natural coordinates
with respect to relative coordinates, and which do not depend on each particular constraint
equation but on the type and sequence of joints.

In the following sections, the derivatives of the constraints vector needed in the current
sensitivity analysis are introduced.

In this section, the following analytical expressions of the first order derivatives �ẑ and
�̇ẑ are used as starting point for the calculation of second order derivatives:

�ẑ = �qqz + �z, (37)

�̇ẑ = �̇qqz + �qq̇z + �̇z. (38)

7.1 Evaluation of �ẑẑ

The second derivative of the constraints vector with respect to the relative coordinates can
be computed as

�ẑẑ = (�ẑ)ẑ = (�qqqz
)

qz + �qqzz + 2�zqqz + �zz. (39)

Note that three new derivatives of the constraint vector appear in (39), involving the
second partial derivative of the constraints with respect to the local coordinates �qq ∈
R

m×nq×nq , the second partial derivative with respect to relative coordinates �zz ∈ R
m×n×n

and the crossed derivatives with respect to the relative and natural coordinates �zq ∈
R

m×n×nq . Natural coordinate derivatives qz and qzz will be addressed in Sects. 8.1 and 8.2,
respectively.

7.2 Evaluation of �̇ẑẑ

This derivative can be calculated through direct differentiation of the expression of �ẑẑ given
by (39) with respect to time:

�̇ẑẑ = d

dt

((
�qqqz

)
qz + �qqzz + 2�zqqz + �zz

)

= (�̇qqqz
)

qz + (�qqq̇z
)

qz + (�qqqz
)

q̇z + �̇qqzz + �qq̇zz + 2�̇zqqz + 2�zqq̇z + �̇zz.

(40)
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The multi-dimensional matrices �̇qq, �̇zq and �̇zz can be directly calculated for a particu-
lar constraint equation, but q̇zz is a general term dependent on the topology of the mechanism
(see Sect. 8.2).

7.3 Evaluation of �ρ̂

Since any constant or coefficient of a constraint can be selected as a parameter, the derivative
of the constraint vector with respect to it can have multiple forms, all depending on the type
of constraint and the type of parameter. Thus, the equations of each type of constraint have
to be specifically differentiated with respect to the parameter selected.

7.4 Evaluation of �ẑρ̂

The derivative �ẑρ̂ can be calculated by means of the following expression:

�ẑρ̂ = (�qqz + �z
)
ρ̂

= �qρ̂qz + �qqzρ + �zρ̂, (41)

in which the multi-dimensional matrices �qρ̂ ∈ R
m×nq×p and �zρ̂ ∈ R

m×n×p are obtained
from the particular expressions of each type of constraint, while qzρ ∈ R

nq×n×p is related to
the topology of the mechanism (see Sect. 8.4).

If the parameters of the system are related to the local geometry of a body, this is, they
condition the position of local coordinates, there will be a double explicit dependency in the
derivatives of the constraint vector (with q and ρ). In this case:

�qρ̂ = �qqqρ + �qρ, (42a)

�zρ̂ = �zqqρ + �zρ . (42b)

The derivative qρ is a term dependent on the topology of the system, and will be tackled
in Sect. 8.3.

7.5 Evaluation of �̇ρ̂

This derivative can be obtained by applying the rule of differentiation (1) to the time deriva-
tive of the constraints vector,

(
�̇
)
ρ̂

= (�ẑż + �t )ρ̂ = �ẑρ̂ ż + �t ρ̂, (43)

where �ẑρ̂ ∈ R
m×n×p is a multi-dimensional matrix described in Sect. 7.4, and �t ρ̂ ∈ R

m×p

is a matrix obtained from the particular expressions of each type of constraint.
Observe that �t ρ̂ can be decomposed into �t ρ̂ = �tqqρ + �tρ , with qρ computed using

the expressions of Sect. 8.3.

7.6 Evaluation of �̇ẑρ̂

The term �̇ẑρ̂ ∈R
m×n×p can be expressed in terms of partial derivatives as

�̇ẑρ̂ = (�̇qqz + �qq̇z + �̇z
)
ρ̂

= �̇qρ̂qz + �qρ̂ q̇z + �̇qqzρ + �qq̇zρ + �̇zρ̂ . (44)

Once again, the terms of (44) with the subscript ρ̂ can be further decomposed as

�̇qρ̂ = �̇qqqρ + �qqq̇ρ + �̇qρ, (45a)
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�̇zρ̂ = �̇zqqρ + �zqq̇ρ + �̇zρ . (45b)

Observe that most of the terms vanish for linear and quadratic constraint equations (quite
usual in natural coordinates), with the consequent reduction in the computational burden.

7.7 Evaluation of �̈ρ̂

The derivative �̈ρ̂ is explicitly required to obtain cρ in (18). It can be obtained differentiating
(43) with respect to time:

(
�̈
)
ρ̂

= d

dt

(
�ẑρ̂ ż + �t ρ̂

)= �̇ẑρ̂ ż + �ẑρ̂ z̈ + �̇t ρ̂, (46)

where �̇t ρ̂ = �̇tqqρ +�tqq̇ρ +�̇tρ . The terms �̇ẑρ̂ and �ẑρ̂ have been described in Sects. 7.6
and 7.4, respectively.

8 Point and vector derivatives

Point and vector coordinates are ubiquitous in relative coordinate models. They are required
for the assessment of forces and constraint equations but also for recursive relations, assem-
blies and derivatives. Therefore, an efficient derivative evaluation is crucial to reduce the
computational expense both in the dynamics and in the sensitivity analysis.

Using as starting point the identity qz = q̇ż, a new set of expressions independent of the
selection of reference points is conquered. Moreover, a new set of derivatives with respect
to geometric parameters is also developed.

8.1 Elemental calculation of qz, q̇z and q̈z

Let us consider

qz = [qz1 qz2 . . . qznb

]
, (47)

where nb is the number of joints (or bodies) of the mechanism, and qzj
represents the partial

derivative of a set of natural coordinates with respect to the relative coordinates of joint j ,
which has the expressions presented in Table 3 for each of the joint types studied (see Ap-
pendix D).

Furthermore, q̇z and q̈z can be evaluated as the first and second time derivatives of qz:

q̇z = [ q̇z1 q̇z2 . . . q̇znb

]
, (48a)

q̈z = [ q̈z1 q̈z2 . . . q̈znb

]
, (48b)

with q̇zj
and q̈zj

being the partial derivatives of natural velocities and accelerations with
respect to the relative coordinates of joint j , respectively, which can be easily evaluated as
the time derivatives of expressions of Table 3.

The resulting joint dependent expressions are independent of the reference point selected,
which simplifies the implementation of RTdyn0 and RTdyn1 formulations and reduces the
computational effort devoted to second order derivatives.
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Table 3 Natural coordinates derivatives in positions with respect to relative coordinates

Joint Point

(
∂rk

∂zi

)
Vector

(
∂uk

∂zi

)

Revolute
(
r̃j − r̃k

)
wj

(−ũk

)
wj

Prismatic wj 0

Cardan
(
r̃j − r̃k

) [
wj1 wj2

] (−ũk

) [
wj1 wj2

]

Cylindrical
[

wj

(
r̃j − r̃k

)
wj

] [
0
(−ũk

)
wj

]

Sphericala 2
(
r̃j − r̃k

)
E 2

(−ũk

)
E

Floating
[

I3 2
(
r̃j − r̃k

)
E
] [

03 2
(−ũk

)
E
]

awith E = Ai

[
−ē ˜̄e + e0I

]
and

[
e0 ē

]T
being the Euler parameters.

8.2 Elemental calculation of qzz and q̇zz

Using the expressions presented in the previous section, the multi-dimensional matrix qzz

is straightforward to achieve. Let us consider the matrix qzzx, defined as the product of the
multi-dimensional matrix qzz ∈ R

nq×n×n by a vector x ∈ R
n. Each of its elements can be

evaluated as

(qzzx)(i, j) = ∂

∂z

(
∂qi

∂zj

)
xj , (49)

with i and j being the indices of joints.

Observe that the terms
∂

∂z

(
∂qi

∂zj

)
xj can be easily calculated taking derivatives of the

expressions of Table 3. For brevity, this derivative will be only specified for a revolute joint,
the extension to the other joints being almost straightforward.

• Revolute joint
For a point,

∂

∂z

(
∂rk

∂zj

)
xj = (r̃j − r̃k

) ∂wj

∂z
xj + w̃j

(
∂rk

∂z
− ∂rj

∂z

)
xj . (50)

For a vector,

∂

∂z

(
∂uk

∂zj

)
xj = −ũk

∂wj

∂z
xj + w̃j

∂uk

∂z
xj . (51)

The resulting elemental second derivatives are expressed in terms of single derivatives
of natural coordinates, whose expressions have been introduced in Sect. 8.1. The scheme of
differentiation presented enhances the efficiency of the computation of qzz compared with
the expressions depending on Rv.

The partial derivative q̇zz can be reached by assembling the time derivatives of the terms
introduced in the current section.

8.3 Elemental calculation of qρ , q̇ρ and q̈ρ

For the sake of simplicity, let us consider here the case of a local coordinate of a point as a
sensitivity parameter. The position of any point in an open chain system involving the joint
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types considered in this work (see Table 3) can be computed by means of

ri
k =

i∑

h=1

(
Ah

(
r̄h
h − r̄h

h−1

))+ Ai

(
r̄i
k − r̄i

i

)+
i∑

h=1

(uhzh) , (52)

with h being each of the preceding joints of body i within the kinematic chain, uh the axis
of translation in prismatic, cylindrical and floating joints, and zh the translation coordinate.
Observe that neither the axis nor the coordinate of a translational motion has direct depen-
dencies with the local coordinate of any point.

From (52) it can be inferred that the local coordinates affecting ri
k are those used in the

definition of the preceding joints in the kinematic chain, this is, the group of joints that
are between the base body and body i, as well as the local coordinates of point k in body i.
Considering that rotation matrices only involve local coordinates of vectors, their derivatives
with respect to the local coordinates of a point are null.

The partial derivative of the position of any point is

∂rk

∂ r̄l
j

=
⎧
⎨

⎩

Al in Case 1,

−Al in Case 2,

0 in Case 3,

(53)

in which l represents the body where the local coordinates of point k are defined as param-
eters, and cases are:

• Case 1. Point j is contained in the definition of a preceding joint and l is the first body of
the joint,5 or k = j .

• Case 2. Point j is involved in the definition of a preceding joint and l is the second body
of the joint.

• Case 3. Point j does not affect any joint previous to body i and k �= j .

If an axis of rotation can be only defined by a vector, as it is implemented in MBSLIM,
the derivative of the position of a vector with respect to the local coordinates of a point
is always zero because no local coordinates of points are included into an expression of a
rotation matrix, ∂uk/∂ r̄l

j = 0.
Additionally, terms q̇ρ̂ and q̈ρ̂ can be evaluated as the first and second temporal deriva-

tives of qρ̂ , which for the case of local coordinates of points as parameters reduces to the
mere evaluation of the time derivatives of a rotation matrix (see (53)).

8.4 Elemental calculation of qzρ and q̇zρ

Following the scheme of differentiation of the previous sections, the second derivative of q
with respect to the relative coordinates and with respect to the parameters of the system can
be obtained by taking derivatives of qρ with respect to z. The results are

∂

∂z

(
∂rk

∂ r̄l
j

)

=
⎧
⎨

⎩

∂Al/∂z in Case 1,

−∂Al/∂z in Case 2,

0 in Case 3,

(54)

where l is the body where the local coordinates of point k are defined as parameters. The
cases have been defined in Sect. 8.3.

5The first body of the joint is that closer to the ground, while the second is closer to the tips.
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Table 4 Recursive relations
derivatives involved in a
sensitivity analysis

Joint-dependent Joint independent

w.r.t. z (Ai )z, (bi )ẑ,
(
ḃi

)
ẑ (di )ẑ, (Bi )ẑ,

(
Ḃi

)
ẑ

w.r.t. ż
(
ḃi

)
ˆ̇z (di ) ˆ̇z,

(
Ḃi

)
ˆ̇z

w.r.t. ρ (Ai )ρ , (bi )ρ̂ ,
(
ḃi

)
ρ̂ (di )ρ̂ , (Bi )ρ̂ ,

(
Ḃi

)
ρ̂

The derivative q̇zρ can be easily obtained applying again a new time derivative to the
expressions of qzρ .

9 Derivatives of recursive kinematic relations

One of the most significant differences between global and topological formulations is the
presence of recursive relations needed for the assemblies and accumulations in topological
models. These terms rely on the relative coordinates and local coordinates of points and
vectors defining each joint.

Recursive relations can be categorized in two groups: joint dependent terms, with Ai , bv
i

and ḃv
i ; and joint independent terms, with Bv

i , Ḃv
i and dv

i . Their derivatives are summarized
in Table 4.

9.1 Evaluation of (Ai)z

A rotation matrix of a body can be computed recursively as Ai = Ai−1Ai−1
i , with Ai−1 being

the rotation matrix of body i − 1 and Ai−1
i a relative rotation matrix between bodies i − 1

and i. Taking derivatives of this expression, (Ai )z becomes

(Ai )z = (Ai−1)z Ai−1
i + Ai−1

(
Ai−1

i

)
z . (55)

However, a more efficient expression is possible, involving only partial derivatives of
relative rotation matrices without the need of accumulating terms as (Ai−1)z,

(Ai )z =
⎛

⎝
i∑

j=1

Aj−1

(
Aj−1

j

)

z
Aj

T

⎞

⎠Ai . (56)

Observe that the relative rotation matrix derivatives involved in (56) only depend on the
joint coordinates describing each relative motion. Those derivatives are listed in Table 5.

9.2 Evaluation of (Ai)ρ

The rotation matrix of a body can depend on a few parameters, like the local position of a
vector, for example. Although the derivatives of each relative rotation matrix with respect of
each parameter must be calculated individually, the following assembly is needed:

(Ai )ρ =
⎛

⎝
i∑

j=1

Aj−1

(
Aj−1

j

)

ρ
Aj

T

⎞

⎠Ai . (57)
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Table 5 Derivatives of Ai−1
i

with respect to relative coordinates

Joint Derivative

Revolute A1
(

− sin(zi ) I + sin(zi )w̄
i
j

(
w̄i

j

)T + ˜̄wi
j cos(zi )

)

Prismatic 0

Cardan
∂Ai−1

i

∂zi
=
[

∂A1
k1

∂zi1
A2A3

k2 A1
k1A2 ∂A3

k2
∂zi2

]

∂A1
k1

∂zi1
= − sin zi1 I + sin zi1w̄i−1

j

(
w̄i−1

j

)T + ˜̄wi−1
j cos zi1

∂A3
k2

∂zi2
= − sin zi2 I + sin zi2w̄i

j+1

(
w̄i

j+1

)T + ˜̄wi
j+1 cos zi2

Cylindrical Combination of revolute and prismatic joints

Sphericala
(

∂Ē
∂p̄

ḠT + Ē
∂ḠT

∂p̄

)
(

2 − p̄Tp̄
)

−2ĒḠT
(

p̄T
)

Floating Derivatives with respect to translation coordinates are null.

Derivatives with respect to Euler parameters are identical to the spherical joint.

aThe expression Ai−1
i

= ĒḠT
(

2 − p̄Tp̄
)

for the relative rotation matrix has been considered for the sake of

consistency.

9.3 Evaluation of
(
bv

i

)
ẑ and

(
ḃv

i

)

ẑ

Even though each type of joint has a different expression for bv
i (see Appendix D), some

patterns can be detected and harnessed to gather terms and reuse structures of computation.
Basically, the derivatives of bv

i with respect to the relative coordinates can be divided in two
types, those involving natural coordinates and those depending also on Euler parameters.

As a means to simplify the notation and make the final expressions clearer, a decomposi-
tion of the term bv

i is considered. On the one hand, bvj

i can be expressed as a combination of
arrays bvj

i ∈ R
6, with each array bvj

i being the j th column of matrix bv
i . On the other hand,

each column can be further divided into arrays bvk,j

i ∈ R
3 corresponding to the linear and

angular part of bvj

i . Accordingly, the term bv
i of the spherical joint can be expressed with

this notation as

bv
i = [bv1

i bv2
i bv3

i bv4
i

]=
[

bv1,1
i bv1,2

i bv1,3
i bv1,4

i

bv2,1
i bv2,2

i bv2,3
i bv2,4

i

]
. (58)

These two divisions of bv
i make it possible to differentiate arrays instead of matrices

and they allow taking derivatives separately on the linear part of the term (the first three
rows) and on the angular part (from the fourth to sixth row). The present notation intends
to make the differentiation more readable and to reflect the close relation of bv

i with its own
derivatives.

In order to reduce the extension of this paper, only the final expressions are included (see
Appendix D for the original expressions of bv

i for each joint).
In general, the partial derivative of the term ḃv

i with respect to the relative coordinates in
positions z can be calculated as the time derivative of the expressions of Table 6:

ḃv
i = dbv

i

dt
⇒ (

ḃv
i

)
z = d

(
bv

i

)
z

dt
. (59)
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Table 6 Derivatives of bv
i

with respect to relative coordinates

Joint Derivative

Revolute
(
bv
i

)
ẑ =

⎡

⎣
˜
bv1,1
i
˜
bv2,1
i

⎤

⎦
[

0 −I
]

Rv
i

+
[

w̃j

0

]((
ri

)

z
−
[

I 0
]

Rv
i

)

Prismatic
(
bv
i

)
ẑ =

⎡

⎣
˜
bv1,1
i

0

⎤

⎦
[

0 −I
]

Rv
i

Cardana
(

bv1
i

)

ẑ
=
⎡

⎣
˜
bv1,1
i
˜
bv2,1
i

⎤

⎦
[

0 −I
]

Rv
i−1 +

[
w̃j

0

]
((

ri

)

z
−
[

I 0
]

Rv
i

)
+

[
w̃j

(
r̃i − r̃j

)

0

][
0 −I

]
bv0
i

(
bv2
i

)

ẑ
=
⎡

⎣
˜
bv1,2
i
˜
bv2,2
i

⎤

⎦
[

0 −I
]

Rv
i

+
[

w̃j+1

0

]((
ri

)

z
−
[

I 0
]

Rv
i

)

Cylindrical Combination of revolute and prismatic joints

Spherical
(
bv
i

)
ẑ = 2

⎡

⎣
Ẽ
((

ri

)

z
+
[
−I r̃j − r̃i

]
Rv

i

)
+ (r̃j − r̃i

)(
Ai−1

(
Ē
)

z
+
(

Ai−1

)

z
Ē
)

(
Ai−1

(
Ē
)

z
+
(

Ai−1

)

z
Ē
)

⎤

⎦

Floating Derivatives with respect to translation coordinates are null.

Derivatives with respect to Euler parameters are identical to the spherical joint.

aThe new term bv0
i

is a matrix of dimensions 6 ×n composed of zeros and with the term bv
i

assembled in the

position corresponding to the coordinates of the joint i, bv0
i

=
[

0 . . . 0 bv
i

0 . . . 0
]
.

The time differentiation in this case is straightforward, thus the particular expression for
each joint is omitted here.

9.4 Evaluation of
(
bv

i

)
ρ̂

The recursive kinematic relations are expressed as a combination of natural coordinates,
relative coordinates (Euler parameters) and rotation matrices. Since rotation matrices and
natural coordinates involve local coordinates of points and vectors, those local coordinates
constitute a possible set of parameters that affect the recursive kinematic relations.

The term
(
bv

i

)
ρ̂

can be obtained for any kinematic joint by means of a two-stage process:
first, derivatives can be taken with respect to the points and vectors that define the joint; the
second stage consists in computing the derivative of the natural coordinates with respect to
the parameters as explained in Sect. 8.3.

9.5 Evaluation of
(
Bv

i

)
ẑ and

(
Ḃv

i

)

ẑ

The term Bv
i relates the position of the different reference points of each body [24]. The

derivative of Bv
i depends on the type of reference point selected, as it is patent in the follow-

ing expression:

(
Bv

i

)
ẑ =
[

0
(
r̃i−1

)
ẑ − (r̃i

)
ẑ

0 0

]
, (60)
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in which the particular expression of the corresponding reference point derivative has to be
used.

Besides,
(
Ḃv

i

)
ẑ can be expressed as

(
Ḃv

i

)
ẑ =
[

0
(˙̃ri−1

)

ẑ
−
(˙̃ri

)

ẑ
0 0

]

. (61)

In the case of a set of reference points fixed in the local reference frame of the corre-
sponding body, as in RTdyn0, expressions (60) and (61) can be reformulated. For the sake
of clearness, Let us consider the product of these derivatives by a given array x ∈R

6:

(
By

i

)
ẑ x = (By

i

)
ẑ

[
x1

x2

]
=
[

x̃2

([
0 r̃i−1 − r̃i

]
Ry

i−1 + [I 0
]

by0
i

)

0

]

, (62)

(
Ḃy

i

)
ẑ x = (Ḃy

i

)
ẑ

[
x1

x2

]
=
[

x̃2

([
I 0

]
Ṙy

i − [I 0
]

Ṙy
i−1

)

0

]
, (63)

with by0
i = by

i

∂ żk

∂ ż
= [0 . . . 0 by

i 0 . . . 0
]
.

If the reference point is fixed in the global frame, as it happens in RTdyn1, the derivative
is more cumbersome,

(
Ḃz

i

)
ẑx = (Ḃz

i

)
ẑ

[
x1

x2

]

=
[

x̃2

([
I 0

]
Ṙz

i − [ ω̃i 0
]

Rz
i − [I 0

]
Ṙz

i−1 + [ ω̃i−1 0
]

Rz
i−1

)

0

]
.

(64)

9.6 Evaluation of
(
dv

i

)
ˆ̇z

As long as di can be expressed in terms of bv
i and ḃv

i according to (4e), its derivatives
(di )ẑ and (di ) ˆ̇z can be formulated as a combination of bi and ḃi , and their derivatives. The
differentiation of the general expression of dv

i for any type of joint, and for any reference
point yields

(
dv

i

)
ˆ̇z =
[(˙̃ri−1 − ˙̃ri

)[
0 I

]
Rv

i−1 − ω̃i−1

(
(ṙi−1)ż − (ṙi )ż

)

0

]

+ (ḃv
i

)
ˆ̇z żi + ḃv0

i , (65)

ḃv0
i = ḃv

i

∂ żk

∂ ż
= [0 . . . 0 ḃv

i 0 . . . 0
]
. (66)

The accumulation term dv�
i evaluated in (24) can be differentiated with respect to joint

coordinate velocities, which yields
(
dv�

i

)
ˆ̇z = (dv

i

)
ˆ̇z + Bv

i

(
dv�

h

)
ˆ̇z , (67)

where h is the parent body of i. Accordingly, this derivative can be computed as a recursive
accumulation of

(
dv

i

)
ˆ̇z from the root to the leaves of the mechanism.

Equations (65) and (67) apply for any set of reference points. For RTdyn0 and RTdyn1,
the particular derivatives of the reference points can be directly substituted, regarding also
that Bv

i becomes the identity in the RTdyn1 method.
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9.7 Evaluation of
(
dv

i

)
ẑ

This derivative can be obtained from the differentiation of
(
dv

i

)
ˆ̇z with respect to time, but it

is more direct to start from equation (4e). Taking derivatives of (4e) yields

(
dv

i

)
ẑ =
[(˙̃ri−1 − ˙̃ri

)([
0 I

]
Ṙv

i−1 − [0 ω̃i−1
]

Rv
i−1

)− ω̃i−1

((˙̃ri−1

)

z
−
(˙̃ri

)

z

)

0

]

+ (ḃv
i

)
ẑ żi .

(68)

Analogously to Sect. 9.6, the derivative of dv�
i with respect to z can be reached through

an accumulative process,

(
dv�

i

)
ẑ = (dv

i

)
ẑ + (Bv

i

)
ẑ dv�

h + Bv
i

(
dv�

h

)
ẑ . (69)

Equations (68) and (69) can be further particularized for RTdyn0 and RTdyn1 substitut-
ing the corresponding expressions of the reference point derivatives. Moreover, it should be
recalled that in the RTdyn1 method Bz

i becomes the identity and
(
Bz

i

)
ẑ is null.

10 Numerical experiments

The sensitivity analysis proposed in this paper has been tested in two multibody systems.
In these numerical experiments, the accuracy is compared with the equivalent formulation
in natural coordinates, with a reference result. Moreover, the computational burden is also
compared between semi-recursive and global ALI3-P forward sensitivity formulations. All
the sensitivity analyses in relative and natural coordinates have been computed with the
multibody library MBSLIM in an Intel Core i7-8700 CPU at 3.20 GHz running Windows 10
with Fortran Intel Parallel Studio XE 2018.

10.1 Sensitivity analysis of a five-bar mechanism

The first mechanism tested is the five-bar linkage sensitivity benchmark problem displayed
in Fig. 1. A detailed description of the mechanism, initial conditions, simulation time, objec-
tive function and sensitivity parameters is included in the IFToMM benchmark library [32].

According to [32], an array of cost functions is considered ψ = [ψ1 ψ2 ψ3
]T ∈ R

3

for the sensitivity analysis, with

ψ1 =
∫ tF

t0

(r2 − r20)
T (r2 − r20)dt, (70a)

ψ2 =
∫ tF

t0

ṙT
2 ṙ2dt, (70b)

ψ3 =
∫ tF

t0

r̈T
2 r̈2dt, (70c)

in which r2 is the position of the point identified as 2 in Fig. 1, whereas the term r20 repre-
sents the initial position of point 2.
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Fig. 1 Five-bar linkage

The group of parameters considered in the sensitivity analysis are the natural length of
the springs, the mass of bar A1, the longitudinal coordinate of the local position of its center
of mass and the length of the bar A1,

ρ = [Ls1 Ls2 mA1 xG
A1 LA1

]
, (71)

in which xG
A1 constitutes a simplified notation of

(
r̄G

A1

)
x
, with X being the longitudinal local

coordinate of the bar.
The numerical experiment consists in a 5-second dynamic simulation and sensitivity

analysis of the mechanism subjected to gravitational and spring forces. All semi-recursive
and global ALI3-P formulations are executed with a penalty factor α = 109 using non-
iterative mass orthogonal projections, with ς = 1.0. Since the purpose of the document does
not rely on the dynamic simulation of the mechanism but on its sensitivity analysis, dynamic
graphs are omitted, and the reader is referred to the benchmark mechanism description in
[32] for more information about the motion of the five-bar linkage.

The evolution of the objective functions (70a)–(70c) over time is displayed in Fig. 2, in
which the results of global and semi-recursive ALI3-P formulations are compared with the
reference result. This plot evidences a high level of accuracy of dynamic formulations, thus
a similar accuracy level can be expected for the objective functions gradient.

The results for the gradient of the objective function (70a)–(70c) evaluated with the semi-
recursive ALI3-P forward sensitivity formulation particularized for RTdyn0 and RTdyn1 are
compared in Table 7 with the global ALI3-P forward sensitivity formulation and with the
reference response included in the benchmark mechanism description in [32]. This table
shows an excellent level of accuracy for all the sensitivity formulations compared.

Looking at Table 8, it is obvious that the computation of the sensitivity analysis using
relative coordinates models is slower than the calculation with the equivalent formulations
in natural coordinates, even though the dynamics have similar computational times. For
multibody models with a higher number of bodies, a better performance of semi-recursive
methods is expected.

Regarding the selection of reference points, Table 8 shows that both RTdyn0 and RTdyn1
lead to almost identical computational efforts, with the CPU time deviation being lower than
1 millisecond in this numerical example.

10.2 Sensitivity analysis of a buggy vehicle

As second numerical experiment, a more complex industrial multibody system is considered
in order to prove both the validity of the semi-recursive ALI3-P sensitivity formulations and
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Fig. 2 Evolution of each component of the objective function

their performance in real life mechanisms. This model has been previously used to test semi-
recursive dynamic formulations [24] and different sensitivity analysis methods [25, 26],
among other topics [33, 34]. In this section, only the essential information of the mechanism
and analysis conditions will be provided. For a more detailed description of the multibody
system, maneuvers, objective functions and parameters, two new benchmark problems have
been submitted to the IFToMM benchmark library [32].

The vehicle displayed in Fig. 3 is a four-wheeled buggy composed of 18 bodies and with
four articulated suspensions. The mechanism has been modelled with 33 points, 25 vectors,
4 angles (one per wheel) and 5 distances (steering rack and one per spring–damper system).
Moreover, a rheonomic constraint has been used for the guidance of the steering rack.

The natural coordinates model generated is composed of 180 mixed coordinates (171 co-
ordinates of points and vectors and 9 relative to angles and distances) and it is provided with
178 constraint equations. The relative model coordinates automatically built by MBSLIM
consist of 18 kinematic joints parameterized by a total of 36 joint coordinates. The opening
of closed loops and the user defined constraints yield a total of 26 constraint equations.

The buggy vehicle is subjected to gravitational forces and a spring–damper force asso-
ciated to each suspension. Moreover, the wheel–ground interaction has been modelled by
means of tire contact-frictional forces.

In the initial position, the suspensions of the vehicle are not at the equilibrium configura-
tion but slightly elevated, and therefore a stabilization of the suspensions occurs during the
first second of simulation.

The behaviour of the semi-recursive sensitivity formulations introduced in this paper is
assessed in two maneuvers performed with this multibody system. The dynamics of the two
maneuvers considered here are studied and detailed in the benchmark problem descriptions
[32] and in [24], thus hereinafter the focus will be primarily put on their sensitivity analysis.
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Table 7 Comparison of the objective functions gradient evaluated with the global and semi-recursive ALI3-P
forward sensitivity formulations and with the reference formulation

RTdyn0 ALI3-P RTdyn1 ALI3-P ALI3-P Reference

(
ψ1
)′
Ls1

–4.2288 –4.2288 –4.2288 –4.2288
(
ψ1
)′
Ls2

3.2116 3.2116 3.2116 3.2116
(
ψ1
)′
mA1

0.31865 0.31865 0.31865 0.31866
(
ψ1
)′
xG
A1

0.44234 0.44234 0.44234 0.44235
(
ψ1
)′
LA1

3.3597 3.3597 3.3598 3.3598

(
ψ2
)′
Ls1

–15.452 –15.452 –15.452 –15.452
(
ψ2
)′
Ls2

50.309 50.309 50.309 50.309
(
ψ2
)′
mA1

0.97016 0.97016 0.97015 0.97012
(
ψ2
)′
xG
A1

0.74569 0.74569 0.74568 0.74560
(
ψ2
)′
LA1

–27.359 –27.359 –27.359 –27.359

(
ψ3
)′
Ls1

221.64 221.64 221.64 221.64
(
ψ3
)′
Ls2

2436.6 2436.6 2436.6 2436.6
(
ψ3
)′
mA1

–32.497 –32.497 –32.497 –32.497
(
ψ3
)′
xG
A1

–85.658 –85.658 –85.658 –85.657
(
ψ3
)′
LA1

–2546.5 –2546.5 –2546.6 –2546.6

Table 8 CPU time (in seconds) of global and semi-recursive ALI3-P forward sensitivity formulations for the
five-bar mechanism

Sensitivity formulation CPU time CPU time nat. coord. Ratio nat/rel

RTdyn0 ALI3-P 0.719 0.547 0.761

RTdyn1 ALI3-P 0.719 0.547 0.761

10.2.1 First maneuver: step descent

The first maneuver consists in the descent of a step of 1 cm located at 5.5 m from the origin,
with forward initial linear speed of 3 m/s and 11 rad/s for each wheel. With this velocity, the
step is reached approximately at t = 2.0 s. The simulation lasts 4.5 seconds with a time step
of 1 ms, no additional traction forces are applied and the steering system is blocked with the
front wheels straight.
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Fig. 3 Image of the buggy
vehicle identifying the points and
vectors defining the model

For the sensitivity analysis of this maneuver, the following objective function is consid-
ered:

ψ =
∫ tF

t0

r̈2
1z

dt, (72)

in which r̈1z denotes the Z (vertical) component of the acceleration of point 1, located in
the front of the chassis. This objective function represents a measure of comfort, since it is
evaluating the accelerations that the driver would experiment during the descent of the step.

The parameters selected for this maneuver are the stiffness and damping coefficients of
the four suspensions (equal values are considered for the spring-dampers of each axle) along
with the mass of the chassis,

ρ = [kf cf kr cr mc
]
, (73)

where kf and cf are the stiffness and damping coefficients of the front suspensions, kr and cr

denote the stiffness and damping coefficients of the rear suspensions and mc represents the
mass of the chassis.

Dynamic results are referred to [24], where the identical maneuver with the same semi-
recursive and global ALI3-P formulations have been executed.

Figure 4 displays the value of the objective function gradient obtained with the two
semi-recursive sensitivity formulations presented in this paper (for RTdyn0 and RTdyn1
semi-recursive methods), with the equivalent formulation in natural coordinates and with
the reference values. The convergence of the results in this figure highlights the validity and
accuracy of the new sensitivity formulations presented, which is even more relevant taking
into account the totally different models being simulated.

A comparison of CPU times of the sensitivity formulations displayed in Table 9 presents
a superior efficiency of semi-recursive formulations, which are 15.8% faster than the equiv-
alent formulation in natural coordinates for this particular maneuver.

10.2.2 Second maneuver: double lane change

The second maneuver lasts 12 seconds and consists in a double lane change under the con-
ditions specified in [24]. In this maneuver, the lateral and inertial forces entail a change in
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Fig. 4 Objective function gradient for the step-descent maneuver

Table 9 CPU time of relative coordinates sensitivity formulations (in seconds) compared with the equivalent
one in natural coordinates for the step-descent maneuver

Formulation CPU time CPU time nat. coord. Ratio nat/rel

RTdyn0 ALI3-P: DDM 8.188 9.484 1.158

RTdyn1 ALI3-P: DDM 8.188 9.484 1.158

the roll φ of the chassis. For the sensitivity analysis, an objective function measuring the roll
rate sum of squares over time is considered,

ψ =
∫ tF

t0

φ̇2dt. (74)
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Fig. 5 Evolution of the objective function over time on a double lane change maneuver

Table 10 CPU time of relative coordinates sensitivity formulations (in seconds) compared with the equivalent
one in natural coordinates for the double lane change maneuver

Formulation CPU time CPU time nat. coord. Ratio nat/rel

RTdyn0 ALI3-P 2.578 4.609 1.788

RTdyn1 ALI3-P 2.578 4.609 1.788

The sensitivities of this objective function will deliver the relevance of each one of the
parameters in the roll rate, and they could be eventually used for minimizing the roll rate
during this maneuver.

The set of parameters considered are the same as in the previous maneuver (73).
A double lane change is a smoother maneuver than the step descent since there are no

impacts, collisions or abrupt changes in forces or constraints. Therefore, both the dynamics
and its sensitivities can be computed increasing the time step. In this case, the semi-recursive
and global ALI3-P formulations are executed with a time step of 10 milliseconds.

In Fig. 5, a small divergence of the objective function evolution over time assessed with
the global ALI3-P formulation with respect to the reference result can be observed, while
semi-recursive dynamic formulations are more accurate for this time step.

According to the objective function gradients of Fig. 6, semi-recursive formulations dis-
play, as it happens in the dynamics, better behaviour than the equivalent global formulation
in terms of accuracy. Moreover, it is especially remarkable that, even for 10 milliseconds of
time step, the semi-recursive ALI3-P forward sensitivity results are very close to the refer-
ence.

Comparing computational efforts of semi-recursive and global ALI3-P forward sensitiv-
ity formulations, Table 10 evidences that the first methods are 78.8% faster for the same
time step. Therefore, is clear that semi-recursive methods outperform ALI3-P global formu-
lations in this numerical experiment both in terms of accuracy and efficiency.

The results of this maneuver demonstrate the low computational time required to com-
pute the sensitivity analysis of this complex multibody model involving several bodies, types
of joints, closed loops, types of constraints, types of forces and types of parameters. In fact,
the dynamics and sensitivity analysis of a 12-second maneuver is executed in 2.578 seconds,
which is 4.655 times faster than real time.
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Fig. 6 Objective function gradient for the double lane change maneuver

11 Conclusions

In this paper, the direct differentiation method has been successfully applied to the semi-
recursive augmented Lagrangian index-3 formulation with velocity and acceleration pro-
jections (ALI3-P) recently reviewed in [24]. As a result, a semi-recursive ALI3-P forward
sensitivity formulation has been developed for an arbitrary selection of reference points.
In parallel, two specific sensitivity formulations have been developed and implemented in
the general purpose multibody library MBSLIM, corresponding to the particularization of
the general formulation to RTdyn0 and RTdyn1 semi-recursive methods. Additionally, the
most important derivatives involved in this sensitivity formulation have been analytically
obtained, including the mass matrix, generalized forces vector and constraint derivatives.

An important effort has been devoted to the efficient differentiation of natural coordinates
due to its omnipresence in the derivatives of semi-recursive expressions. As a result, a set of
expressions independent of the reference point selection have been developed. Furthermore,
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the case of a local coordinate of a point as a parameter has been studied, delivering a set of
straightforward derivatives founded on the topology of the system.

Moreover, the semi-recursive ALI3-P forward sensitivity formulations for RTdyn0 and
RTdyn1 have been tested in two numerical experiments. The semi-recursive sensitivity for-
mulations have displayed excellent behaviour in terms of accuracy in the five-bar experi-
ment, but they have showed worse efficiency than global methods. However, the two ma-
neuvers executed with the buggy vehicle have proved that semi-recursive sensitivity formu-
lations are well suited for branched multibody systems involving several bodies. In these
maneuvers, the semi-recursive ALI3-P sensitivity formulations have required less computa-
tional effort than the equivalent global formulation.

Apart from the sensitivity formulation presented, the developments referred to derivatives
of semi-recursive terms (i.e. mass matrix, generalized forces vector and constraints deriva-
tives) are described in detail in order to establish the foundations for other semi-recursive
constrained multibody sensitivity formulations.

Appendix A: Derivatives of the mass matrix of a body

In a general formulation for any reference point, the body mass matrix can be expressed as
the product of a mass matrix referred to the center of mass by a correction matrix Dv

i (see
[24]):

Mv
i = (Dv

i

)T
My

i Dv
i , with Dv

i =
[

I r̃i − r̃i
G

0 I

]
, (75)

with ri being the position of the reference point of body i and ri
G its centre of mass.

Applying the chain rule for differentiation, the multi-dimensional matrix
(

Mv
i

)

ẑ
∈

R
6×6×n, the result of the application of the differentiation rule (1) to the mass matrix with

respect to the relative coordinates, can be calculated as

(
Mv

i

)

ẑ
= mi

((
DvT

i

)

ẑ
Dv

i + (Dv
i

)T (
Dv

i

)

ẑ

)
+
[

0 0

0
(

JG
i

)

ẑ

]

, (76)

with mi ∈R
1 being the mass of body i and JG

i ∈R
3×3 its inertia tensor referred to its centre

of mass.
Considering now the differentiation with respect of the parameters of the system, the

multi-dimensional matrix
(

Mv
i

)

ρ̂
∈R

6×6×p takes the form

(
Mv

i

)

ρ̂
= ∂mi

∂ρ

((
Dv

i

)T
Dv

i

)
+ mi

((
DvT

i

)

ρ̂
Dv

i + (Dv
i

)T (
Dv

i

)

ρ̂

)
+
[

0 0

0
(

JG
i

)

ρ̂

]

. (77)

The previous expressions can be applied to RTdyn0 and RTdyn1 (see [24]). First, for the
RTdyn0 approach, with the centre of mass of each body as a reference point, the following
simplifications apply: Dy

i = I,
(
Dy

i

)
ẑ = 0 and

(
Dy

i

)
ρ̂

= 0. For the RTdyn1 approach, the fol-

lowing simplifications can be considered: Bz
i = I,

(
Bz

i

)
ẑ = 0 and

(
Bz

i

)
ρ̂

= 0. The substitution
in (21), (76) and (77) is straightforward, and for brevity omitted.
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Appendix B: Equivalent stiffness matrix for RTdyn0 and RTdyn1

First, let us consider the RTdyn0 formulation. Substituting the reference point of this for-
mulation into (29a)–(29c) yields

Ky
i = −

(
Qy

i

)

ẑ
=

ni
f∑

j=1

Ky(e)
i,j + Ky

i

(I)
, (78a)

Ky(e)
i,j =

⎡

⎣
−
(

fj
)

ẑ

f̃j
[
0 r̃i

G − r̃j

]
Ry

i −
(

nG
j

)

ẑ
+ (r̃i

G − r̃j

)(
fj
)

ẑ

⎤

⎦ , (78b)

Ky
i

(I) =
[

0(
ω̃iJG

i − ˜JG
i ωi

)(
ωi

)

ẑ
+ ω̃i

(
JG

i

)

ẑ
ωi

]

. (78c)

The term of inertia Ky
i

(I)
is substantially simpler than (29a)–(29c), which reduces the

implementation effort. The assembly equations (25a) and (25b) can be directly applied to
this method.

In RTdyn1, the composition of the stiffness matrix is slightly different since
(
ri

0

)
ẑ �=(

ṙi
0

)
ˆ̇z:

Kz
i = −

(
Qz

i

)

ẑ
=

ni
f∑

j=1

Kz(e)
i,j + Kz

i
(I)

, (79a)

Kz(e)
i,j =

⎡

⎣
−
(

fj
)

ẑ

f̃j
[

I −r̃j

]
Rz

i −
(

nG
j

)

ẑ
− r̃j

(
fj
)

ẑ

⎤

⎦ , (79b)

Kz
i
(I) =

[
tẑ

r̃i
Gtẑ + t̃

[−I r̃i
G

]
Rz

i +
(
ω̃iJG

i − ˜JG
i ωi

)(
ωi

)

ẑ
+ ω̃i

(
JG

i

)

ẑ
ωi

]

, (79c)

t = miω̃i

(
ω̃iri

G

)
, (79d)

tẑ = miω̃iω̃i

[
I −r̃i

G

]
Rz

i − mi

(
˜̃ωiri

G + ω̃i r̃i
G

)(
ωi

)

ẑ
. (79e)

The application of the relation Bz
i = I, coming from the definition of the RTdyn1 ap-

proach, to the assembly equations of the stiffness matrix (25a) and (25b) brings about im-
portant simplifications:

Ki = bzT
i Kz�

i −
(

bzT
i

)

ẑ
Qz�

i , (80a)

Kz�
i = Kz

i +
(

Mz
i

)

ẑ
dz�

i + Mz
i

(
dz�

i

)

ẑ
+

ni
s∑

s=1

Kz�
s . (80b)
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Appendix C: Equivalent damping matrix for RTdyn0 and RTdyn1

Considering the centre of mass of each body as reference point (RTdyn0), the damping
matrix can be formulated as follows:

Cy
i = −

(
Qy

i

)

ˆ̇z
=

ni
f∑

j=1

Cy(e)
i,j + Cy

i

(I)
, (81a)

Cy(e)
i,j = −

[
I

r̃j − r̃i
G

](
fj
)

ẑ
−
[

0(
nG

j

)

ẑ

]

, Cy
i

(I) =
[

0 0

0 ω̃iJG
i − ˜JG

i ωi

]

Ry
i . (81b)

In analogy to what happens with the stiffness matrix, the elemental damping matrices
related to the inertial terms are simplified, while the other terms and assemblies (31a) and
(31b) remain unaltered.

In the RTdyn1 approach, the corresponding equations are:

Cz
i = −

(
Qz

i

)

ˆ̇z
=

ni
f∑

j=1

Cz(e)
i,j + Cz

i
(I)

, (82a)

Cz(e)
i,j = −

[
I
r̃j

](
fj
)

ẑ
−
[

0(
nG

j

)

ẑ

]

, (82b)

Cz
i
(I) =

⎡

⎣
0 −mi

(
˜̃ωiri

G + ω̃i r̃i
G

)

0 ω̃iJG
i − ˜JG

i ωi−mi r̃i
G

(
˜̃ωiri

G + ω̃i r̃i
G

)

⎤

⎦Rz
i . (82c)

In this case, the assembly is also simplified:

Ci = bzT
i Cz�

i , Cz�
i = Cz

i + Mz
i

(
dz�

i

)

ˆ̇z
+

ni
s∑

s=1

Cz�
s . (83)

Appendix D: Summary of kinematic joints considered

The main kinematic relations of the kinematic joints considered in this work are summarize
in Table 11.

Appendix E: Evaluation of
(
bv

i

)
ẑ for RTdyn0 and RTdyn1

The derivatives are presented in Table 12 for RTdyn0 and Table 13 for RTdyn1.
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Table 11 Summary of kinematic joints

Joint Ai−1
i

bv
i

Revolute A(zk)

[
w̃j

(
ri − rj

)

wj

]

Prismatic I

[
uj+1

0

]

Cardana A(z1k)A(zk2)

[
w̃j

(
ri − rj

)
w̃j+1

(
ri − rj

)

wj wj+1

]

Cylindrical A(zk2)

[
wj w̃j

(
ri − rj

)

0 wj

]

Spherical ĒḠT

[
2
(
r̃j − r̃i

)
E

2E

]

Floating ĒḠT

[
I3 2

(
r̃i

G − r̃i

)
E

0 2E

]

aA(zk) = cos zk I + (1 − cos zk) w̄i
j

(
w̄i

j

)T + ˜̄wi
j sin zk , E = Ai

[
−ē ˜̄e + e0I

]
, with

[
e0 ē

]T
being the

Euler parameters.

Table 12 Derivatives of by
i

with respect to relative coordinates for RTdyn0

Joint Derivative

Revolute
(

by
i

)

ẑ
=
⎡

⎣
˜
by1,1
i
˜
by2,1
i

⎤

⎦
[

0 −I
]

Ry
i

Prismatic
(

by
i

)

ẑ
=
⎡

⎣
˜
by1,1
i

0

⎤

⎦
[

0 −I
]

Ry
i

Cardan
(

by1
i

)

ẑ
=
⎡

⎣
˜
by1,1
i
˜
by2,1
i

⎤

⎦
[

0 −I
]

Ry
i−1 +

[
w̃j

(
r̃i

G − r̃j

)

0

]
[

0 −I
]

by0
i

(
by2
i

)

ẑ
=
⎡

⎣
˜
by1,2
i
˜
by2,2
i

⎤

⎦
[

0 −I
]

Ry
i

Cylindrical Combination of revolute and prismatic joints

Spherical
(

by
i

)

ẑ
= 2

[
Ẽ
[

0 r̃j − r̃i

]
Ry

i
+ (r̃j − r̃i

) (
Ai−1

(
Ē
)
z + (Ai−1

)
z Ē
)

(
Ai−1

(
Ē
)
z + (Ai−1

)
z Ē
)

]

Floating Derivatives with respect to translation coordinates are null.

Derivatives with respect to Euler parameters are identical to the spherical joint.
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Table 13 Derivatives of bz
i

with respect to relative coordinates for RTdyn1

Joint Derivative

Revolute
(
bz
i

)
ẑ =

⎡

⎣
˜
bz1,1
i
˜
bz2,1
i

⎤

⎦
[

0 −I
]

Rz
i
+
[

w̃j

0

]
[
−I 0

]
Rz

i

Prismatic
(

bz
i

)

ẑ
=
⎡

⎣
˜
by1,1
i

0

⎤

⎦
[

0 −I
]

Rz
i

Cardan
(

bz1
i

)

ẑ
=
⎡

⎣
˜
bz1,1
i
˜
bz2,1
i

⎤

⎦
[

0 −I
]

Rz
i−1+

[
w̃j

0

]
[
−I 0

]
Rz

i
+
[

−w̃j r̃j

0

]
[

0 −I
]

bz0
i

(
bz2
i

)

ẑ
=
⎡

⎣
˜
bz1,2
i
˜
bz2,2
i

⎤

⎦
[

0 −I
]

Rz
i
+
[

w̃j+1

0

]
[
−I 0

]
Rz

i

Cylindrical Combination of revolute and prismatic joints

Spherical
(
bz
i

)
ẑ = 2

[
Ẽ
[
−I r̃j − r̃i

]
Rz

i
+ (r̃j − r̃i

) (
Ai−1

(
Ē
)
z + (Ai−1

)
z Ē
)

(
Ai−1

(
Ē
)
z + (Ai−1

)
z Ē
)

]

Floating Derivatives with respect to translation coordinates are null.

Derivatives with respect to Euler parameters are identical to the spherical joint.
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