Efficient and accurate methods for computational simulation of netting structures with mesh resistance to opening

DOCTORAL THESIS

Amelia de la Prada Arquer

Advisor: Manuel González Castro Programa Oficial de Doctorado en Ingeniería Industrial

Ferrol, November 2014

- Advantages of numerical simulation applied to fishing nets
- Different conditions can be simulated
- Reduces the dependency on experimental tests (experimental validation is always required)
- Provides information that is difficult to measure (forces in nodes, drag distribution...)
- Relevance of the resistance to opening
- It is a key factor in the selective performance of a trawl
- The inclusion of the resistance to opening in the numerical model is necessary to accurately approximate the net shape

• Objective of this thesis:

To include the mesh resistance to opening in numerical simulation of net structures

• Steps:

Modelling the resistance to opening

- Develop a twine model including → Article No. 1 the mesh resistance to opening
- 2. Measure the resistance to opening \longrightarrow Article No. 2

Numerical simulation

- 3. Solve the equations that govern → Article No. 3 the net structure
- 4. Implementation of the twine model \longrightarrow Article No. 4

Article No. 1: Nonlinear stiffness models of a twine to describe MRO

Article No. 2: Quantifying MRO of netting panels

Article No. 3: Calculating the equilibrium shape of netting structures

Article No. 4: Numerical model for netting with MRO

Conclusions

Future work

Unpublished results

Article No. 1

Nonlinear stiffness models of a net twine to describe mesh resistance to opening of flexible net structures

Journal of Engineering for the Maritime Environment Published online on 9th June 2014

v

Description of the twine model

- Literature
- O'Neill's analytical solutions (exact, asymptotic)
- Priour's linear model
- Assumptions from O'Neill's model
- Based on bending stiffness EI
- 2D double-clamped beam
- x and y coordinates and F_x and F_y forces
- The insertion angle φ_0 remains fixed
- Bending moment proportional to the curvature
- Contributions of the new model
- Solution obtained by FEM (ANSYS)
- Twine extension is considered
- Polar coordinates R and φ and F_r and F_{φ}

Dimensional analysis

• Independent variables

$$F = F(L, EA, EI, R, \varphi)$$

• Dimensionless similarity parameters

$$\Pi_0 = f = F \frac{L^2}{EI} \qquad \Pi_2 = \varphi$$
$$\Pi_1 = r = \frac{R}{L} \qquad \Pi_3 = \gamma = L^2 \frac{EA}{EI}$$

• Non-dimensional equation

$$f = f(r, \varphi \varphi) \qquad \longrightarrow \qquad f^{EA_i} = f^{EA_i}(r, \varphi)$$

Article No. 1: Nonlinear stiffness models of a twine to describe MRO

Force-displacement response

- Enforced displacement constraints in polar coordinates
- Geometric nonlinear static analysis to obtain the reaction forces

Grid surface representation of the dimensionless forces in polar coordinates (f_r, f_{φ})

Approximate force models

1. Polynomial surface fitting

$$f(r,\cos\varphi) = \sum_{0 < i+j < m+n} c_{ij} r^i (\cos\varphi)^j$$

Force	m	n	R ²
f_r	2	3	0.994
f_{φ}	1	4	0.985

2. Spline surface fitting of the potential energy

$v_{i}(r, \varphi) = \sum_{j=1}^{3} \sum_{j=1}^{3} c_{ij}^{ij} (r - r_{i})^{k} (\varphi - \varphi_{i})^{l} - \varphi_{ij}^{k} (\varphi - \varphi_{i})^{l}$	Conservative field	$\int f_{r}$
$\sum_{k=0}^{l} \sum_{l=0}^{l} kl \langle l \rangle \langle$		f_{φ}^{ij}

3. Spring-based model

$$f_r(r,\cos\varphi) = EA\left(\frac{L^2}{EI}\right)(r - r_{eq}(\cos\varphi)) \xrightarrow{f_y >>> f_x} y^{0.5}$$

x

Test problem and results

- Description:
- A twine with fixed φ_0
- A vertical force $(F_{\gamma} > 0)$ is applied to \mathbf{P}_1
- Different models are compared
- ANSYS solution (FEM)
- Asymptotic solution
- Exact solution
- Model No. 1 Polynomial fitting
- Model No. 2 Spline fitting
- Model No. 3 Spring based

• Trajectory of point **P**₁ as the vertical force increases

• Relative error in force

Summary of the models

Features	Linear	Exact	Asymptotic solution	Proposed models		
	model	solution		No. 1	No. 2	No. 3
Takes into account the bending stiffness (EI)	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Takes into account twine axial stiffness (EA)	×	×	×	\checkmark	\checkmark	\checkmark
Forces as explicit function of position	\checkmark	×	×	\checkmark	\checkmark	\checkmark
Highly accurate	×	\checkmark	×	\checkmark	\checkmark	\checkmark
Easy to implement in existing formulations	\checkmark	×	×	\checkmark	×	\checkmark
Conservative force field	\checkmark	×	×	×	\checkmark	×
Compatible with large axial deformations	×	×	×	×	×	\checkmark
Compatible with large transversal forces	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×

Article No. 2

Quantifying mesh resistance to opening of netting panels: experimental method, regression models and parameter estimation strategies

> *ICES Journal of Marine Science* Published online on 24th July 2014

Article No. 2: Quantifying MRO of netting panels

Description of the experimental set-up

• Experimental set-up from Sala

- Expensive measuring instrument
- Imposed normal and transversal displacements Simple and inexpensive
- Asymptotic solution as model
- Fixed constraint estimation strategy
- Disagreement between num. and exp. results

• Proposed experimental set-up

14

- Previous twine models as models

- Imposed load in normal direction

- Different estimation strategies

Article No. 2: Quantifying MRO of netting panels

Methodology

- Experimental methodology
- A normal load is applied and the normal elongation of the panel is measured
- Different materials were tested
- Loading and unloading cycle
- Data analysis
- Parameters for the regression: EI , b, L_{twine} , φ_0
- Theoretical models for MRO:
 - Exact solution Asymptotic solution Polynomial fitting model Spline fitting model
- 4 parameter estimation strategies

Estimation	Constraint applied on parameter				
strategy	L _{twine}	b	$arphi_0$		
1	-	-	-		
2	Min/max	Min/max	Min/max		
3	Fixed	Fixed	Min/max		
4(Sala)	-	-	Fixed		

Summary of the results (loading cycle)

	Stra	ategy No. 1	Stra	ategy No.2	Stra	ategy No.3	Strategy	y No.4 (Sala)
	R ²	Estimates	R ²	Estimates	R ²	Estimates	R ²	Estimates
Asymptotic solution		-		-		-	~0.7 for stiff materials	Only <i>EI</i> Inconsistent results
Exact solution	_	Ocassionally		Small confidence intervals		Acceptable		
Polynomial fitting	>0.995	out of physical limits or	>0.995	Medium confidence intervals	>0.990	results reducing the computational	>0.990	Inconsistent
Spline fitting		inconsistent		Unusually high confidence intervals		effort		

Article No. 2: Quantifying MRO of netting panels

Conclusions

- Start the analysis with Strategy No. 3
- Use Strategy No. 2 if Strategy No. 3 fails
- Use the same model to estimate the parameter and to predict the netting behaviour
- Limitations of this work
- Difficulties to fit the unloading cycle
- Does not consider the knot width
- Accurate pre-tension cycles were not applied to the materials

Article No. 3

Assessing the suitability of gradient-based energy minimization methods to calculate the equilibrium shape of netting structures

Computers and structures Published online on 10th February 2014

Methods to calculate the static equilibrium

• State of the art

Method	Advantages	Disadvantages
Newton Raphson Iteration (Priour)	- Fast	- Local convergence - Ill-conditioned Jacobian matrix
Dynamic simulation (Lee, Li, Takagi)	- Robust and reliable	- Very slow (hours)
Gradient-based energy minimization method (Le Dret)	Avoids matrix operationsNot affected by the Jacobian	- Only for conservative forces

- Objectives of this work
- Test different gradient-based energy minimization methods
- Include non-conservative forces in the analysis
- Compare Newton iteration and energy minimization methods

Numerical model

- Formulation developed by Priour
- Direct formulation of finite element method
- Netting is discretized with triangular elements
- Ropes and cables are discretized with bar elements
- Applied forces
- Elastic forces in finite elements
- Weight and buoyancy
- Hydrodynamic drag (Fluid-structure interaction is not considered)
- Contact with the seabed
- Equilibrium equations

$$\mathbf{F}(\mathbf{q}) = \mathbf{f}^{twine} + \mathbf{f}^{hydro} + \mathbf{f}^{weight} + \mathbf{f}^{buoyancy} + \mathbf{f}^{contact} \rightarrow \mathbf{F}(\mathbf{q}_{equilibrium}) = 0$$

Newton Raphson iteration

 $\mathbf{F}(\mathbf{q}) = 0$ $\mathbf{d}_{i} = -\mathbf{J}^{-1}(\mathbf{q}_{i}) \mathbf{F}(\mathbf{q}_{i})$ Calculate search direction **d** with the Jacobian **J** $\mathbf{q}_{i+1} = \mathbf{q}_{i} + \lambda \mathbf{d}_{i}$ Perform step with step length λ

- Two approaches to achieve a globally convergent algorithm
- 1) Line search $|\mathbf{F}(\mathbf{q}_i + \lambda_j \mathbf{d}_i)| < (1 \alpha) |\mathbf{F}(\mathbf{q}_i)|$
- Calculate the step length λ with a line search and the Armijo rule

2) Step limit

$$\lambda_{i} = \begin{cases} \lambda_{\max} / \max(\mathbf{d}_{i}) & \text{if } \max(\mathbf{d}_{i}) > \lambda_{\max} \\ 1 & \text{otherwise} \end{cases}$$

- Limit the step length λ to a fraction of the characteristic length (1%)
- Also used in method 1 when the line search stagnates (often)

Gradient-based energy minimization methods

• Find the equilibrium position by minimizing the total energy v

 $\min_{\mathbf{q}} v(\mathbf{q}) = E_p - W_{nc} \qquad \begin{array}{l} E_p: \text{ total potential energy of the system} \\ W_{nc}: \text{ work done by non-conservative forces} \end{array}$

• The gradient of v is the opposite of the force vector

$$\mathbf{g} = \nabla v(\mathbf{q}) = -\mathbf{F}(\mathbf{q})$$

- Tested 10 gradient-based methods \rightarrow only 3 methods succeed:
- Nonlinear conjugated gradient
- Limited memory BFGS (LBFGS)
- Newton-CG Trust region
- After comparing the 3 methods, LBFGS is the best suited to find the equilibrium of netting structures

List of benchmark problems

- A set of benchmark problems is defined (400 variables)
- Reference solution obtained via dynamic simulation

LBFGS versus Newton-Raphson: General trend

University of A Coruña – Spain Mechanical Engineering Laboratory http://lim.ii.udc.es

Effect of the problem size

- Solved Test1
- Problem size: 363 5000 variables
- The advantage of LBFGS over NR increases with the problem size
- It avoids matrix factorization
- ×4 times faster (5000 variables)
- The performance of NR is irregular
- Chances of getting tangled mesh configurations during the iteration increase with the number of finite elements used to model the netting

Summary of the results

Features	Newton-Raphson	LBFGS
Robust	×	\checkmark
Easier to program	×	\checkmark
Faster in achieving medium precision solution	×	\checkmark
Faster in achieving high precision solution	\checkmark	×
Faster with the problem size	×	\checkmark

Newton-Raphson and LBFGS are complementary methods

- The use of each method depends on the application
- Both methods can be combined to solve problems

Article No. 4

An efficient and accurate model for netting structures with resistance to opening

Submitted to the International Journal of Solids and Structures on 25th April 2014

Description of the model

- Lumped mass formulation (Takagi, Lee, Li)
- Point mass (knots) interconnected by springs
- Intermediate nodes are usually required
- The knot size is not considered
- Objectives of this work
- Incorporate the **polynomial fitting twine model** in the lumped mass formulation
- Include the knot size
- Compare results from simulation with experimental measurements
- Compare the new model with the traditional lumped mass formulation

Article No. 4: Numerical model for netting with MRO

Numerical model for a twine

• Twine model for large axial deformations

University of A Coruña – Spain Mechanical Engineering Laboratory http://lim.ii.udc.es

Article No. 4: Numerical model for netting with MRO

Numerical model for a mesh

• A local frame is defined for each twine

$$\left\{ \mathbf{u}_{r}, \mathbf{u}_{\varphi}, \mathbf{u}_{z} \right\}$$
$$\mathbf{u}_{r} = (\mathbf{p}_{1} - \mathbf{p}_{0}) / |\mathbf{p}_{1} - \mathbf{p}_{0}|$$
$$\mathbf{u}_{z} = \mathbf{t} \times \mathbf{u}_{r}$$
$$\mathbf{u}_{\varphi} = \mathbf{u}_{r} \times \mathbf{u}_{z}$$

- Spherical knot shape
- The diameter is the average between the effective knot width *a* and height *b*

Numerical validation

• Comparison of the proposed model with FEM solution

Experimental validation

- Reproduce the experiment from Article No. 2 for one sample panel
- Assumptions to validate
- Lumped mass approximation
- Spherical knots
- Results from fitting
- $R^2 = 0.997$
- $EI = 74.9 \pm 8.7\%$ Nmm²
- $L_{twine} = 41.5 \pm 2.6\%$ mm
- $D = 2.1 \pm 0.7\%$ mm
- $\varphi_0 = 22.7 \pm 0.4\%$ rad

Article No. 4: Numerical model for netting with MRO

Analysis of the computational efficiency

- Compare the proposed model with a classical spring model
- 100×100 mesh panel = 61812 variables
- Vertical force is applied to the bottom edge
- The panel is exposed to a constant water current normal to the panel

	Presented	Classical linear
	model	spring model
Numerical meshes	10000	10000
Total solution time (s)	305.5	162.4
Force evaluation calls	10933	10804
Time per call(ms)	27.9	15.0
Time per call per mesh(µs)	2.79	1.50

Summary of the results

Features	Lumped mass + springs	Lumped mass + polynomial fitting twine model		
Takes into account the bending stiffness (EI)	×	\checkmark		
Takes into account twine axial stiffness (EA)	\checkmark	\checkmark		
Compatible with large deformations	\checkmark	\checkmark		
Easy to program	\checkmark	×		
Conservative field	\checkmark	×		
Avoids intermediarte nodes	×	\checkmark		
Includes the knot size	×	\checkmark		

Both models have a similar computational overhead

Article No. 1: Nonlinear stiffness models of a twine to describe MRO

Article No. 2: Quantifying MRO of netting panels

Article No. 3: Calculating the equilibrium shape of netting structures

Article No. 4: Numerical model for netting with MRO

Conclusions

Future work

Unpublished results

- The proposed twine models have been demonstrated to be accurate, efficient, and easy to program
- The experimental procedure to measure the MRO is easy and accurate
- The LBFGS method has been proved to be efficient and accurate in the calculation of the equilibrium shape in problems with large number of variables
- The presented models and methods have been successfully applied to simulate netting structures: the twine model has been implemented, the LBFGS method has been used to solve the equilibrium equations and the experiment has been numerically reproduced

Article No. 1: Nonlinear stiffness models of a twine to describe MRO

Article No. 2: Quantifying MRO of netting panels

Article No. 3: Calculating the equilibrium shape of netting structures

Article No. 4: Numerical model for netting with MRO

Conclusions

Future work

Unpublished results

- Validate the present work with fishing trawls
- Apply parallelization techniques to improve efficiency
- Analyse the effect of how the loading history and plastic deformation affect the MRO
- Apply the presented models and methods to computer-aided design of trawls → topology optimization of trawls

 \rightarrow testing the selective performance of cod-end

Article No. 1: Nonlinear stiffness models of a twine to describe MRO

Article No. 2: Quantifying MRO of netting panels

Article No. 3: Calculating the equilibrium shape of netting structures

Article No. 4: Numerical model for netting with MRO

Conclusions

Future work

Unpublished results

Unpublished results

Use LBFGS method to calculate complete trawls

- Total computation time LBFGS: ~6s for 3978 variables and $|\mathbf{g}|/N = 0.5$
- Unable to compare LBFGS and Newton Raphson methods
- Numerical models for the catch and doors are not included

Unpublished results

Approximated non-conservative energy vs Winther's method

University of A Coruña – Spain Mechanical Engineering Laboratory http://lim.ii.udc.es

Parallelization with OpenMP

Parallelization of the evaluation of forces for all the triangular elements of the netting structure

Problem: unprotected shared memory with different threads

Solutions (4000 variables)

No paralelization

Greedy coloring

Write the shared

memory out of the

parallelization loop

Greedy coloring for 6 colors and 4 threads

Time per evaluation (ms)	3	4	6	4	6
3.6	1	2	5	2	5
1.9		-	Ŭ	-)
0.9	3	4	3	4	3
	1	2	1	2	1

In fishing nets it reduces the computational overhead in a 50%

Efficient and accurate methods for computational simulation of netting structures with mesh resistance to opening

DOCTORAL THESIS

Amelia de la Prada Arquer

Advisor: Manuel González Castro Programa Oficial de Doctorado en Ingeniería Industrial

Ferrol, November 2014

