Implementation in embedded systems of state observers based on multibody dynamics

Antonio J. Rodríguez

Doctoral thesis

Ferrol, June 25th, 2020





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es



# Outline

#### Introduction

- 2 Model-based state observers
- 3 New generation embedded hardware
- ④ Use-case application
- **(5)** Conclusions and future work



### Outline



- 2 Model-based state observers
- 3 New generation embedded hardware
- 4 Use-case application
- 5 Conclusions and future work



# Motivation









#### Use-Case: Wheel Force Transducers

#### Real sensors

- Instrumented rim
- Based on strain gauges
- Expensive

#### Virtual sensors

- Model-based
- Virtual enviroment
- Minimal set of sensors





http://lim.ii.udc.es

#### Virtual Sensing





Laboratorio de Ingeniería Mecánica Universidade da Coruña



### Virtual Sensing





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es



### Virtual Sensing





# Virtual Sensing: Vehicle modeling







#### Actual approaches

### Virtual Sensing: State observer



#### State observer

- Several options:
  - Particles filter
  - Moving horizon estimator
  - Kalman filter
  - etc
- Kalman filter is widely used in automotive applications
- Strong background in the LIM
  - Evaluation of KE with MB models
  - New efficient KF developed



### Embedded hardware: Electronic Control Unit (ECU)



#### ECU

- In-vehicle embedded hardware
- Automotive standard compliant:
  - Reliability
  - Timing
  - Safety
- Low energy consumption
- Low computational capabilities



Opportunity

### New generation embedded hardware





#### Objectives

# Objectives





#### Objectives

Implement accurate virtual sensors for real-time in-vehicle applications

#### Study the suitability of FPGAs for accelerating MB simulations

Develop an accurate and efficient <u>MB-based</u> <u>state observer</u> for vehicle dynamics

Develop a friendly framework for an easy real implementation of the solution



# Outline

#### 1 Introduction

#### 2 Model-based state observers

3 New generation embedded hardware

4 Use-case application

5 Conclusions and future work





# **Multibody dynamics**

MB model Assembly of two or more bodies imperfectly joined, having the possibility of relative movement between them

#### MBScoder<sup>1</sup>

Open source library for automatic

code generation for MB dynamics

- Efficient code in multiple languages
- Different MB formulations
- Different MB coordinates
  - Natural
  - Relative (added in this thesis)



http://lim.ii.udc.es

<sup>&</sup>lt;sup>1</sup>R. Pastorino, F. Cosco, F. Naets, W. Desmet, and J. Cuadrado, "Hard real-time multibody simulations using ARM-based embedded systems," Multibody System Dynamics, vol. 37, pp. 127–143, May 2016.



# Semi-recursive method <sup>2</sup>

#### Relative coordinates

Each body is defined with respect to its previous body

 Minimum number of variables
 Complex equation of motion definition



<sup>2</sup>J. Cuadrado, D. Dopico, M. Gonzalez, and M. A. Naya, "A combined penalty and recursive real-time formulation for multibody dynamics," *Journal of Mechanical Design*, vol. 126, no. 4, p. 602, 2004.



http://lim.ii.udc.es

# Semi-recursive method <sup>2</sup>



<sup>2</sup>J. Cuadrado, D. Dopico, M. Gonzalez, and M. A. Naya, "A combined penalty and recursive real-time formulation for multibody dynamics," *Journal of Mechanical Design*, vol. 126, no. 4, p. 602, 2004.

15 / 72

http://lim.ii.udc.es



Laboratorio de Ingeniería Mecánica Universidade da Coruña

#### Vehicle MB model



| Summary              |                         |
|----------------------|-------------------------|
| DOFs $(z^i)$         | 14                      |
| Steer                | Kinematically<br>guided |
| Rel. Coords. $(z^d)$ | 42                      |
| Bodies               | 29                      |
| Constraints          | 42                      |
| Tire model           | TMeasy <sup>3</sup>     |

<sup>3</sup>W. Hirschberg, G. Rill, and H. Weinfurter, "Tire model TMeasy," *Vehicle System Dynamics*, vol. 45, pp. 101–119, Jan. 2007.



Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

# Kalman filters based on MB dynamics

#### CEKF

- EKF in continuous form
- Non-linearities approximated by a Jacobian matrix
- Requires to adapt MB equations
- Stability and accuracy problems with low sampling rates

#### UKF

- Based on a set of deterministically chosen weighted sample points (sigma-points)
- Sigma-points are propagated through the MB equations
- Independence from MB equations and KF
- High computational cost

#### DEKF

- EKF in discrete form
- Non-linearities approximated by a Jacobian matrix
- Requires to adapt MB equations

#### errorEKF ₄

- Indirect Kalman filter
- EKF based on the errors in the MB variables
- Independence from MB equations and KF
- High computational efficiency

<sup>4</sup>E. Sanjurjo, D. Dopico, A. Luaces, and M. A. Naya, "State and force observers based on multibody models and the indirect Kalman filter," *Mechanical Systems and Signal Processing*, vol. 106, pp. 210–228, June 2018.



Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es



# KF: errorEKF with force estimation





# Outline



- 2 Model-based state observers
- 3 New generation embedded hardware
- 4 Use-case application
- 5 Conclusions and future work





### Modern hardware analysis





### Modern hardware analysis

#### Single Core Processor

High computational power in one core
Simpler to program
Over-provisioned: same core for any application
Low area efficiency
Low power efficiency

#### Homogeneous Multicore Processor

- Lower computational power per core
   High computational power through
  - parallelization ✓ Improved area efficiency <sup>COV</sup> ▲ Improved power
    - efficiency
- X Over-provisioned

#### Heterogeneous Multicore Processor

 Lower computational power per core
 High computational Repower through parallelization
 Fit-for-purpose cores
 Highest area
 COREA efficiency
 Highest power efficiency

20 / 72



http://lim.ii.udc.es

#### Heterogeneous processors for scientific computing







# Field Programmable Gate Array (FPGA)



- Set of wires, logic gates and registers
- Combining each element, a dedicated computer unit can be "built" for a specific application
- Freedom in design to improve performance







#### Selected Hardware



#### Zynq-7000 XC7Z020

- ARM Cortex-A9
  - Dual core
  - Max. freq: 667 MHz
- FPGA Artix-7
- Low-end device (2012)
- Commonly used in automotive applications
  - Computer vision
  - Control purposes



#### FPGA programming

# Hardware/Software partitioning





## Parallelization





## Parallelization





http://lim.ii.udc.es

## Parallelization





# Virtual sensors algorithm: profiling





# Virtual sensors algorithm: profiling







### Mass matrix calculation





#### FPGA implementation: mass matrix calculation (strategy 1)





### FPGA implementation: mass matrix calculation (strategy 2)




# FPGA implementation: mass matrix calculation (strategy 3)





# FPGA implementation: mass matrix calculation (strategy 3)





## Update motion







# FPGA implementation: update motion (strategy 1)





# FPGA implementation: update motion (strategy 2)





# FPGA implementation: update motion (strategy 2)





# Solver of linear system of equations





http://lim.ii.udc.es

# Solver of linear system of equations





# **FPGA** implementation: solver



<sup>5</sup> J. P. David, "Low latency and division free Gauss–Jordan solver in floating point arithmetic," *Journal of Parallel and Distributed Computing*, vol. 106, pp. 185–193, Aug. 2017.

35 / 72

http://lim.ii.udc.es



# Outline

#### Introduction

- 2 Model-based state observers
- 3 New generation embedded hardware
- ④ Use-case application
- 5 Conclusions and future work





#### Methodology

# Methodology



#### Complete vehicle MB model: maneuver







#### Estimations (errorEKF + complete vehicle MB model)





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

# Estimations (errorEKF + complete vehicle MB model): sensors





# Estimations (errorEKF + complete vehicle MB model): sensors





# Estimations (errorEKF + complete vehicle MB model): sensors





#### Estimations (errorEKF + complete vehicle MB model): tire forces





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

# Implementation (errorEKF + complete vehicle MB model)

| Summary Report |                    |            |          |          |            |           |
|----------------|--------------------|------------|----------|----------|------------|-----------|
| Version        |                    | Simulation | Time     | Elapsed  | Average of | Toloranco |
| ARM            | FPGA               | Time (s)   | Step (s) | Time (s) | Iterations | TOIErance |
| Full OBS       | -                  | 10         | 0.004    | 81.870   | 9.083      | $10^{-5}$ |
| Full OBS       | -                  | 10         | 0.004    | 38.284   | 1.419      | $10^{-3}$ |
| OBS            | GJ                 | 10         | 0.004    | 64.957   | 8.652      | $10^{-5}$ |
| OBS            | GJ                 | 10         | 0.004    | 33.459   | 1.388      | $10^{-3}$ |
| OBS            | Inidv. Mass Matrix | 10         | 0.004    | 83.622   | 9.153      | $10^{-5}$ |
| OBS            | Susp. Post-Process | 10         | 0.004    | 128.009  | 16.792     | $10^{-5}$ |



# Implementation (errorEKF + complete vehicle MB model)

| Summary Report                            |                                                                 |                                 |                                                           |                                                           |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------|-----------------------------------------------------------------|---------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARM                                       | Version<br>FPGA                                                 | Simulation<br>Time (s)          | Time<br>Step (s)                                          | Elapsed<br>Time (s)                                       | Average of<br>Iterations                             | Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Full OBS<br>Full OBS<br>OBS<br>OBS<br>OBS | NO REAL<br>GJ<br>GJ<br>Inidv. Mass Matrix<br>Susp. Post-Process | - <b>TIME</b><br>10<br>10<br>10 | <b>PERFC</b><br>0.004<br>0.004<br>0.004<br>0.004<br>0.004 | 81.870<br>8.2.84<br>64.957<br>33.459<br>83.622<br>128.009 | 9.083<br>NCE419<br>8.652<br>1.388<br>9.153<br>16.792 | $10^{-5} \\ 10^{-3} \\ 10^{-5} \\ 10^{-3} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{$ |



# Simplified vehicle MB model



| Summary      |                                  |  |  |  |
|--------------|----------------------------------|--|--|--|
| DOFs         | 14                               |  |  |  |
| Suspension   | Kinematic<br>tables <sup>6</sup> |  |  |  |
| Rel. Coords. | 14                               |  |  |  |
| Bodies       | 9                                |  |  |  |
| Tire model   | TMeasy                           |  |  |  |

<sup>&</sup>lt;sup>6</sup> J. Cuadrado, D. Vilela, I. Iglesias, A. Martín, and A. Peña, "A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort," in *2013 ECCOMAS Thematic Conference on Multibody Dynamics*, p. 10, 2013.



Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es



#### Simplified vehicle MB model: maneuver 1





#### Estimations maneuver 1 (errorEKF + simplified vehicle MB model)





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

#### Estimations maneuver 1 (errorEKF + simplified vehicle MB model): sensors





#### Estimations maneuver 1 (errorEKF + simplified vehicle MB model): sensors





http://lim.ii.udc.es

#### Estimations maneuver 1 (errorEKF + simplified vehicle MB model): sensors





http://lim.ii.udc.es

#### Estimations maneuver 1 (errorEKF + simplified vehicle MB model): tire forces





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

#### Simplified vehicle MB model: maneuver 2







Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

#### Estimations maneuver 2 (errorEKF + simplified vehicle MB model)





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

#### Estimations maneuver 2 (errorEKF + simplified vehicle MB model): sensors





#### Estimations maneuver 2 (errorEKF + simplified vehicle MB model): sensors





#### Estimations maneuver 2 (errorEKF + simplified vehicle MB model): sensors





http://lim.ii.udc.es

#### Estimations maneuver 2 (errorEKF + simplified vehicle MB model): tire forces





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

# Estimations (errorEKF + simplified vehicle MB model): RMSE

| Root-mean-square error         |                        |                        |        |  |  |
|--------------------------------|------------------------|------------------------|--------|--|--|
| Magnitude                      | Maneuver 1<br>errorEKF | Maneuver 2<br>errorEKF | Sensor |  |  |
| Position (m)                   | 0.1988                 | 0.4023                 | 1.9075 |  |  |
| X accel. $(m/s^2)$             | 0.1319                 | 0.3018                 | 0.4492 |  |  |
| Y accel. $(m/s^2)$             | 0.7923                 | 1.5429                 | 0.447  |  |  |
| Z accel. $(m/s^2)$             | 0.3496                 | 0.3662                 | 0.4485 |  |  |
| RR long. tire force $(N)$      | 76.09                  | 165.32                 | -      |  |  |
| RR lat. tire force $(\hat{N})$ | 237.69                 | 265.58                 | -      |  |  |
| RR vert. tire force $(N)$      | 144.25                 | 180.09                 | -      |  |  |

#### errorEKF

- Accurate position estimations
- Accurate longitudinal dynamics
- High error in lateral dynamics

X High error in tire forces

Mass and  $\mu$  errors are not fully corrected



#### State-parameter-input observer





#### State-parameter-input observer





# State-parameter-input observer




## State-parameter-input observer





# Estimations maneuver 1 (SPI + simplified vehicle MB model)





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

### Estimations maneuver 1 (SPI + simplified vehicle MB model): sensors





## Estimations maneuver 1 (SPI + simplified vehicle MB model): sensors





http://lim.ii.udc.es

## Estimations maneuver 1 (SPI + simplified vehicle MB model): sensors





## Estimations maneuver 1 (SPI + simplified vehicle MB model): tire forces





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

## Estimations maneuver 1 (SPI + simplified vehicle MB model): parameters





## Estimations maneuver 2 (SPI + simplified vehicle MB model)





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es

## Estimations maneuver 2 (SPI + simplified vehicle MB model): sensors





### Estimations maneuver 2 (SPI + simplified vehicle MB model): sensors





### Estimations maneuver 2 (SPI + simplified vehicle MB model): sensors





### Estimations maneuver 2 (SPI + simplified vehicle MB model): tire forces





### Estimations maneuver 2 (SPI + simplified vehicle MB model): parameters





# Estimations (SPI + simplified vehicle MB model): RMSE

| Root-mean-square error    |        |          |            |          |  |  |  |  |
|---------------------------|--------|----------|------------|----------|--|--|--|--|
| Magnitude                 | Man    | euver 1  | Maneuver 2 |          |  |  |  |  |
|                           | SPI    | errorEKF | SPI        | errorEKF |  |  |  |  |
| Position (m)              | 0.2196 | 0.1988   | 0.4793     | 0.4023   |  |  |  |  |
| X accel. $(m/s^2)$        | 0.0343 | 0.1319   | 0.0634     | 0.3018   |  |  |  |  |
| Y accel. $(m/s^2)$        | 0.1551 | 0.7923   | 0.2750     | 1.5429   |  |  |  |  |
| Z accel. $(m/s^2)$        | 0.1022 | 0.3496   | 0.1121     | 0.3662   |  |  |  |  |
| RR long. tire force $(N)$ | 28.27  | 76.09    | 28.41      | 165.32   |  |  |  |  |
| RR lat. tire force $(N)$  | 57.77  | 237.69   | 41.27      | 265.58   |  |  |  |  |
| RR vert. tire force $(N)$ | 79.48  | 144.25   | 75.30      | 180.09   |  |  |  |  |





# Implementation (errorEKF/SPI + simplified vehicle MB model)

| Summary Report      |      |                        |                  |                     |                          |                   |  |  |
|---------------------|------|------------------------|------------------|---------------------|--------------------------|-------------------|--|--|
| Version<br>ARM      | FPGA | Simulation<br>Time (s) | Time<br>Step (s) | Elapsed<br>Time (s) | Average of<br>Iterations | Tolerance         |  |  |
| Full OBS (errorEKF) | -    | 10                     | 0.004            | 7.673               | 1.554                    | $10^{-5}$         |  |  |
| Full OBS (SPI)      | -    | 10                     | 0.004            | 21.114              | 1.512                    | $10^{-5}$         |  |  |
| OBS (errorEKF)      | GJ   | 10                     | 0.004            | 7.465               | 1.511                    | $10^{-5}$         |  |  |
| OBS (SPI)           | GJ   | 10                     | 0.004            | 20.158              | 1.544                    | $10^{-5}$         |  |  |
| Full OBS (SPI)      | -    | 10                     | 0.008            | 13.3456             | 3.055                    | $10^{-5}$         |  |  |
| Full OBS (SPI)      | -    | 10                     | 0.008            | 9.381               | 1.046                    | $2 \cdot 10^{-4}$ |  |  |
| OBS (SPI)           | GJ   | 10                     | 0.008            | 12.843              | 3.134                    | $10^{-5}$         |  |  |
| OBS (SPI)           | GJ   | 10                     | 0.008            | 8.957               | 1.047                    | $2 \cdot 10^{-4}$ |  |  |



## Implementation (errorEKF/SPI + simplified vehicle MB model)





## Implementation (errorEKF/SPI + simplified vehicle MB model)

| Root-mean-square error                                                             |                                                                    |                                            |                                              |  |  |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|--|--|--|--|
| Magnitude                                                                          | $\begin{array}{l} SPI \\ (\Delta t = 4 \ \textit{ms}) \end{array}$ | $\frac{SPI}{(\Delta t=8\ ms)}$             | errorEKF $(\Delta t=4\ ms)$                  |  |  |  |  |
| RR long. tire force $(N)$<br>RR lat. tire force $(N)$<br>RR vert. tire force $(N)$ | 28.41 (7%)<br>41.27 (9%)<br>75.30 (8%)                             | 57.12 (14%)<br>63.06 (12%)<br>135.73 (13%) | 165.32 (41%)<br>265.58 (50%)<br>180.09 (18%) |  |  |  |  |



# Outline

### 1 Introduction

- 2 Model-based state observers
- 3 New generation embedded hardware
- 4 Use-case application







# Conclusions

#### FPGA in multibody simulations

- FPGAs can be used for accelerating MB simulations
- FPGA guidelines:
  - Profile the code
  - Detect bottlenecks of the simulation
  - Analyze data dependencies
  - Check the available FPGA resources
  - Parallelize the code
- The amount of resources is a critical factor
- The model size and features affect to the final acceleration level

#### Virtual sensors based on MB models

- The errorEKF shows high efficiency, but low accuracy for tire-forces estimation
- The developed SPI observer increases the accuracy through parameter estimation
- Error reduction from:
  - 50% to 9% in lateral forces
  - 41% to 7% in longitudinal forces
  - 18% to 8% in vertical forces



# Conclusions

#### Real-time performance on embedded hardware

- A full vehicle MB model is expensive for real-time applications on embedded hardware
- A simplified vehicle MB model offers higher efficiency
- Virtual sensors in real time are provided with the SPI observer combined with the simplified vehicle model:
  - Frequency of 125Hz
  - Around 10-15% error in tire force estimation

#### Virtual sensor framework

- MB modeling: MBScoder is improved with the addition of relative coordinates
- The state observer is compliant with the FMI 2.0 Standard:
  - High level of abstraction for new users
  - Easy integration with many tools



## Future work

#### FPGA in multibody simulations

- Test devices with higher resources
- Develop a procedure for optimally select the best candidates of a MB simulation to be implemented on FPGAs

#### Virtual sensors based on MB models

- Replace the UKF of the SPI observer by an EKF to increase the computational efficiency
- Explore the tuning process of the filter noises
- Implement the observer in a real vehicle and test it on different maneuvers



# Works derived from this thesis

- Published journal papers
  - A.J. Rodriguez, R. Pastorino, A. Carro-Lagoa, K. Janssens and M.A. Naya. Hardware acceleration of multibody simulations for real-time embedded applications. *Multibody System Dynamics* (2020).
- Submitted journal papers (under review)
  - A.J. Rodriguez, E. Sanjurjo, R. Pastorino and M.A. Naya. State, parameter and input observers based on multibody models and Kalman filters for vehicle dynamics. *Mechanical Systems and Signal Processing*.



## **Conference communications**

- A.J. Rodriguez, R. Pastorino, M.A. Naya, E. Sanjurjo and W. Desmet. Real-time estimation based on multibody dynamics for automotive embedded heterogeneous computing. In 8th ECCOMAS Thematic Conference on Multibody Dynamics, Prague, Czech Republic, June 2017.
- E. Sanjurjo, D. Dopico, M.A. Naya and A.J. Rodriguez. Indirect state and force estimator based on multibody models. In 8th ECCOMAS Thematic Conference on Multibody Dynamics, Prague, Czech Republic, June 2017.
- A.J. Rodriguez, R. Pastorino, M.A. Naya and E. Sanjurjo. Virtual sensing on automotive embedded heterogeneous platforms. In 15th European Automotive Congress (EAEC 2017), Madrid, Spain, October 2017.
- A.J. Rodriguez, R. Pastorino, A. Luaces, E. Sanjurjo and M.A. Naya. Implementation of state observers based on multibody dynamics on automotive platforms in real-time. In 5th Joint Int. Conference on Multibody System Dynamics (IMSD 2018), Lisbon, Portugal, June 2018.
- E. Sanjurjo, A.J. Rodriguez, D. Dopico, A. Luaces and M.A. Naya. State and input observer for the multibody model of a car. In 5th Joint Int. Conference on Multibody System Dynamics (IMSD 2018), Lisbon, Portugal June, 2018.
- A.J. Rodriguez, R. Pastorino, E. Sanjurjo, A. Luaces and M.A. Naya. Implementación de Observador de Estados basado en Modelos Multicuerpo en Tiempo Real en Plataformas Embebidas. In XXII Congreso Nacional de Ingeniería Mecánica, Madrid, Spain, September 2018.



# Implementation in embedded systems of state observers based on multibody dynamics





Laboratorio de Ingeniería Mecánica Universidade da Coruña

http://lim.ii.udc.es