EFFICIENT IMPLEMENTATIONS AND CO-SIMULATION TECHNIQUES IN MULTIBODY SYSTEM DYNAMICS

Francisco Javier González Varela

Doctoral thesis

University of A Coruña

Ferrol, May 3rd, 2010

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Motivation

 Multibody systems (MBS) dynamic simulation is present in a wide range of applications today

- MBS simulation is heavily dependent on available software features
 - Simulated systems are very complex and often multi-disciplinary
 - High efficiency required in real-time applications and what-if analyses

Objectives of this thesis

- Two main goals in current research in MBS dynamic simulation
 - Efficiency
 - Addition of new functionality (multiphysics, contact, impacts, etc.)
- 1- Efficient implementations in MBS software
 - Linear Algebra routines
 - Parallelization
- 2 Communication with external packages
 - Comparison of available communication techniques
 - Multirate co-simulation
- Intermediate goal: MBS software architecture

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Software requirements

Research software for MBS simulation

Structure of the simulation software

Modular structure

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Linear algebra operations in MBS simulation

- MBS codes make intensive use of linear algebra operations
 - $\mathbf{B} = \mathbf{A}^{\mathrm{T}}\mathbf{A}$ Low-level scalar-matrix-vector operations
 - Solution of linear systems of equations Ax = b

Reference Fortran implementation

- Dense: IMSL solver
- Sparse: MA27 solver

Fraction of elapsed time in computations	Dense	Sparse
Residual and tangent matrix	48%	15%
Factorization and back-substitutions	44%	51%
Velocity and acceleration projections	4%	13%
Other	4%	21%

Benchmark setup: test problem

- 2D assembly of four-bar linkages
- 1 degree of freedom; variable number of loops and size
- Simulation time: 20 s

Benchmark setup: dynamic formulation

Index-3 augmented Lagrangian (natural coordinates)

 $\mathbf{M}\ddot{\mathbf{q}} + \boldsymbol{\Phi}_{\mathbf{q}}^{\mathrm{T}}\boldsymbol{\alpha}\boldsymbol{\Phi} + \boldsymbol{\Phi}_{\mathbf{q}}^{\mathrm{T}}\boldsymbol{\lambda}^{*} = \mathbf{Q}$ $\boldsymbol{\lambda}_{i+1}^{*} = \boldsymbol{\lambda}_{i}^{*} + \boldsymbol{\alpha}\boldsymbol{\Phi}_{i+1}; \quad i = 0, 1, 2, \dots$

- Trapezoidal rule as integrator (implicit)
- Newton-Raphson iteration with approximate tangent matrix (SPD)

$$\mathbf{f}(\mathbf{q}) = \mathbf{M}\mathbf{q}_{n+1} + \frac{\Delta t^2}{4} \mathbf{\Phi}_{\mathbf{q}(n+1)}^{\mathrm{T}} \left(\alpha \mathbf{\Phi}_{n+1} + \boldsymbol{\lambda}_{n+1} \right) - \frac{\Delta t^2}{4} \mathbf{Q}_{n+1} + \frac{\Delta t^2}{4} \mathbf{M} \hat{\mathbf{q}}_n$$

$$\left[\frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}\right] \cong \mathbf{M} + \frac{\Delta t}{2}\mathbf{C} + \frac{\Delta t^2}{4} \left(\mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}}\boldsymbol{\alpha}\mathbf{\Phi}_{\mathbf{q}} + \mathbf{K}\right)$$

Mass-orthogonal projection of velocities and accelerations

$$\begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}} \end{bmatrix} \dot{\mathbf{q}} = \begin{bmatrix} \mathbf{M} + \frac{\Delta t}{2} \mathbf{C} + \frac{\Delta t^2}{4} \mathbf{K} \end{bmatrix} \dot{\mathbf{q}}^* - \frac{\Delta t^2}{4} \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\alpha} \mathbf{\Phi}_t \\ \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}} \end{bmatrix} \ddot{\mathbf{q}} = \begin{bmatrix} \mathbf{M} + \frac{\Delta t}{2} \mathbf{C} + \frac{\Delta t^2}{4} \mathbf{K} \end{bmatrix} \ddot{\mathbf{q}}^* - \frac{\Delta t^2}{4} \mathbf{\Phi}_{\mathbf{q}}^{\mathrm{T}} \boldsymbol{\alpha} \left(\dot{\mathbf{\Phi}}_{\mathbf{q}} \dot{\mathbf{q}} + \dot{\mathbf{\Phi}}_t \right) \end{bmatrix}$$

Efficient dense implementations

- Dense storage is *supposed* to be faster for small problems
- Standard libraries for linear algebra operations:
 - Low-level scalar-matrix-vector operations:
 - Linear equation solvers:
 LAPACK

BLAS/LAPACK are available in several implementations:

- Reference Original Fortran77 implementation (not tuned)
- ATLAS Tuned for different hardware architectures
- GotoBLAS Tuned for different CPUs
 - Tuned for AMD CPUs
- Other

ACML

• As a function of problem size

Number of variables N

http://lim.ii.udc.es

Efficient sparse implementations

- Sparse linear equation solver is critical (50% of CPU)
- Use of optimized matrix handling routines
 - **A** + **B**
 - $\mathbf{A}^{\mathrm{T}}\mathbf{A}$
 - Access to Jacobian matrix
- Different solvers have been tested (all CCS)

Sparse linear solver Matrix type	
Cholmod	Symmetric positive definite
KLU	General
SuperLU	General
Umfpack	General
WSMP	Symmetric indefinite

Performance of sparse linear solvers

• As a function of problem size

Number of variables N

Effect of matrix filling on sparse implementations

- The percentage of non-zeros in the test problem is small
 - Global formulation
 - 6% of non-zeros for N = 100 variables
- The % of non-zeros can increase
 - Recursive and semi-recursive formulations
 - Some methods for flexible bodies

Modification of the test problem

- Addition of artificial non-zeros to the leading matrix
- Evaluation of solver performance vs. % of non-zeros

Effect of matrix filling on sparse implementations

• As a function of percentage of non-zeros (N = 100)

% of non-zeros in the tangent matrix

Best linear equation solver

• As a function of problem size and % of non-zeros in leading matrix

Best linear equation solver

- As a function of problem size and % of non-zeros in leading matrix
 - Without KLU *refactor* routine

Conclusions

- Efficient linear algebra implementations can speedup simulations
 - With respect to our starting implementation, in a factor of 2-3
- Sparse solvers have performed better: KLU, Cholmod, WSMP
 - Selection rule based on matrix type, size (N) and non-zeros (NNZ)

Type of leading matrix	$N \cdot (NNZ - 10)$			
Type of leading matrix	< 900	> 900		
Symmetric positive definite	KLU (smooth problems) Cholmod (rough problems)	WSMP		
Symmetric	KLU	WSMP		
Unsymmetric	KLU	KLU		

Future work:

Test the optimization with recursive and/or flexible formulations

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Non-intrusive parallelization in MBS simulations

- In MBS, parallel computing is usually achieved through
 - Parallel algorithms: recursive formulations, sub-structuring...
 - Implemented with Message Passing Interface (MPI)
- These are intrusive methods
 - They require particular code designs and implementations
 - Difficult to apply to existing sequential codes
- Objective: parallelization of existing sequential codes with minimum effort
 - Use of non-intrusive techniques (with minor changes in the code)
 - Not as efficient as intrusive methods
 - Easy to apply to existing sequential MBS simulation tools

Benchmark setup

- Same problem and dynamic formulation used in previous chapter
 - L-loop four-bar linkage
 - Index-3 augmented Lagrangian formulation with projection of velocities and accelerations

- Heavily optimized for sequential execution
 - Difficult to gain advantage from parallelization
- Tests in 2-core computer
 - Intel Core Duo E6300

Starting sequential implementation

Profiling of the initial implementation, for N variables

Task	Description	% of elapsed time		Integration time step			tep				
		N = 1000	N = 8000			_	$\overline{}$		_		
1	Predictor (Trapezoidal rule)	4.1	4.0								
2	Evaluate dynamic terms	9.3	9.8	1 2	2 3	4	5		6 7	8	9
3	Evaluate tangent matrix	11.8	11.8								
4	Evaluate residual vector	7.6	7.6								
5	Factorize leading matrix	36.8	36.7								
6	Back-substitution	5.9	5.8				Ļ				
7	Project velocities	9.4	9.3				·				
8	Project accelerations	12.3	12.2		4				7		
9	Other	2.8	2.8								
Total	elapsed time (s)	10.0	102.4	1 2	2 3		5	6	8	9	

Parallel linear equation solvers

- Different parallel solvers tested as a function of:
 - Matrix size (number of variables N from 100 to 8,000)
 - Matrix filling
 - Filling ratio NNZ/N (NNZ = number of non-zeros in the leading matrix)

Type	of problem and dynamic formulation	NNZ / N		
A)	Rigid bodies – Global formulations	< 10		
B)	Rigid bodies – Recursive formulations	10 30		
	Flexible bodies - Component mode synthesis	10 - 30		
C)	Flexible bodies – Finite element mesh	30 - 100		

- Effect of sparse pattern diminished
 - Use of reordering strategies: METIS, AMD...

Parallel linear equation solvers: Results

• Best solver as a function of size N and matrix filling NNZ/N

Parallel linear equation solvers: Results

Speedup of Pardiso (best parallel solver) vs. best sequential solver

$$S = \frac{elapsed \ time_{sequential}}{elapsed \ time_{parallel}}$$

- Theoretical maximum, for 2 CPUs, is 1.53
- Speedups close to 70% of the theoretical maximum, for N > 2,000
- Easy replacement of solvers in code

OpenMP: Description

- Set of compiler directives
 - Guide the compiler to parallelize the code

OpenMP: Description

- Set of compiler directives
 - Guide the compiler to parallelize the code

Example

Calls 2 functions in parallel

```
void example1()
{
    #pragma omp parallel sections
    #pragma omp section
    function1();
    #pragma omp section
    function2();
}
```


OpenMP: Description

- Set of compiler directives
 - Guide the compiler to parallelize the code

- Advantages (over MPI)
 - Does not change the design of the code
 - Compiler does the hard work of parallelization in a transparent way
 - Can be applied incrementally
- Disadvantages (over MPI)
 - Only supports shared-memory hardware architectures
 - Cannot achieve the same performance as MPI in some cases

OpenMP: Results

Speedup of the OpenMP parallel implementation

Number of variables N

http://lim.ii.udc.es

Conclusions

- OpenMP and parallel linear equation solvers can be used in MBS simulation
 - Actually non-intrusive and straightforward to implement
 - Can be applied to parallelize existing sequential codes
 - Speedups above 70% of maximum theoretical values
- Parallel linear equation solvers
 - Suitable for N > 2000 and NNZ/N > 10
- OpenMP
 - Suitable for N > 100

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Introduction

 Multibody dynamics often needs multiphysics modelling

Communication cases

Function evaluation

- MBS software as master
- No numerical integration in auxiliary tool

Co-simulation

- Each software package carries out its numerical integration
- Data sharing at defined synchronization points

http://lim.ii.udc.es

Function evaluation

• Test problem: dynamic simulation of a double-pendulum (10 s)

Measure CPU times and compare to standalone C++ code

Function evaluation: MATLAB Engine

MATLAB Engine

Inter-process communication

- Easy to implement (direct call to MATLAB)
- Slow: parsing of instructions (overhead about 0.25 ms per call)

Function evaluation: MATLAB Compiler

MATLAB Compiler

• Invocation of MATLAB code translated to C and compiled into a library

http://lim.ii.udc.es

Janes L.

- Claimed to be the fastest method
- Changes in MATLAB code force re-compilation

Function evaluation: MEX functions

- MEX functions
 - Originally designed to call C code from MATLAB

More complex than previous techniques: MEX interface required

http://lim.ii.udc.es

MATLAB code is not compiled

Function evaluation: computational efficiency

Comparison of CPU-times

• For two different time-steps ($\Delta t = 10^{-3}$ s and $\Delta t = 10^{-2}$ s)

	Method	CPU-time $(\Delta t = 10^{-3} s)$	Ratio	CPU-time $(\Delta t = 10^{-2} s)$	Ratio	
-	Standalone MBS code (reference)	5.02 ·10 ⁻² s	1	8.40 ·10 ⁻³ s	1	
	MATLAB Engine	18.12 s	361.0	3.32 s	395.2	
	MATLAB Compiler	5.56 s	110.8	1.07 s	127.4	
	MEX functions	0.64 s	12.7	0.12 s	14.3	

 MEX functions are 7 times faster than MATLAB Compiler and 25 than MATLAB Engine

Co-simulation

Test problem: dynamic simulation

- L-loop four-bar linkage (MBS software)
- Powered by an internal combustion engine (Simulink)

Co-simulation: implementation techniques

- Inter-process communication
- Use of TCP/IP sockets
- Simulink as master
 - MBS code compiled as a .dll
 - Embedded in an S-function block
- MBS as master
 - Simulink model compiled as a .dll
 - Use of Real-Time Workshop

- Simulink model with SimMechanics elements
- C equivalent compiled with Real-Time Workshop

http://lim.ii.udc.es

Co-simulation

 Dynamic response for a 1-loop mechanism

Co-simulation: computational efficiency

- Comparison of CPU-times
 - For $\Delta t = 1 \text{ ms}$
 - 30 s simulation

Conclusions

- Different coupling techniques with MATLAB/Simulink have been explored
- Function evaluation
 - Recommended use of MEX functions

Co-simulation

- Able to efficiently simulate models up to 300 global variables
- *Simulink as master* recommended in development stages (easy to modify)
- *MBS as master* recommended for real-time applications (efficient)

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Introduction

Weakly coupled co-simulation

- Each solver integrates a subsystem
- Commercial packages only allow exchange of data at fixed rates
- Multirate integration
 - Different time-steps in each subsystem
 - Reduces the elapsed time in simulations

- Difficult to implement with commercial block diagram simulators
 - Non-modifiable integration schemes
 - Iterative coupling schemes cannot be used
 - Variable-step integrators not supported by interfaces
- Development and test of a multirate co-simulation interface between MBS software and block diagram simulators

Multirate co-simulation interface

Weakly coupled co-simulation scheme

- Two methods:
 - Slowest-first (SF): slow subsystem is ahead in the integration
 - Fastest-first (*FF*): fast subsystem is ahead in the integration
- Interpolation / Extrapolation polynomials used for approximating the values of the inputs between time-steps
- Smoothing:
 - Averaging of the outputs of the fast subsystem during a time-step of the slow one

Initial situation (*slowest-first* configuration)

• Block diagram simulator starts a time-step (h_1)

MBS software advances a time-step (h₂)

MBS software advances a time-step (h₂)

The block diagram simulator can resume its time-step

And the process starts again...

Test problem: modelling approach

- Double-mass, triple-spring assembly (linear system)
- Purely mechanical

m₁: Simulink

m₂: MBS software embedded in *S*-function block

Test problem

 Known analytical solution (reference to measure error in position and energy)

 Simulation: 100 cycles of the fast subsystem

$$\begin{cases} x_1(t) = C_{11} \cdot \cos(\omega_1 t) + C_{13} \cdot \cos(\omega_2 t) \\ x_2(t) = C_{21} \cdot \cos(\omega_1 t) + C_{23} \cdot \cos(\omega_2 t) \end{cases}$$

http://lim.ii.udc.es

- Different co-simulation strategies evaluated in a sweep of *FR*
 - FR varies from 1.5 to 100

$$FR = \omega_1 / \omega_2 \approx h_2 / h_1$$

Test problem: results

- There is not a 'general purpose' technique valid for every *FR*
- SF is suitable for FR < 50
 - With cubic interpolation (O3) for FR < 25
 - Without interpolation (*O0*) for 25 < FR < 50

Test problem: results

- For FR > 50
 - *SF* scheme increases position error (phase error)
 - *FF* scheme increases energy error (amplification/attenuation)
- Smoothing techniques can reduce error for certain combinations of *FR* and interpolation order

Simulink model of a thermal engine + MBS model of a kart

$$b_1 = 0.1 \text{ ms}$$

 $b_2 = 10 \text{ ms}$

• 10 s simulation

http://lim.ii.udc.es

• Reference simulation: $h_1 = h_2 = 0.1 \text{ ms} (FR = 1; O0)$

• Elapsed time: 158.4 s

- Simulation with multirate techniques (increase of h_2 up to 10 ms)
- Measurement of deviations with respect to reference pitch ($\Delta \psi$)

http://lim.ii.udc.es

- Simulation with multirate techniques (increase of h_2 up to 10 ms)
- Measurement of deviations with respect to reference pitch ($\Delta \psi$)

http://lim.ii.udc.es

Conclusions

- A multirate co-simulation interface has been implemented and tested, which allows the use of
 - Different interpolation/extrapolation polynomial orders
 - Fastest-first and slowest-first integration schemes
 - Smoothing
- Use of the interface demonstrated
 - In a simple example with analytical solution
 - In a complex multiphysics model
- Multirate techniques enable reductions in simulation time (up to a factor of 9, in the shown example) with acceptable derived errors
- A way of finding the best co-simulation strategy beforehand is desirable

Outline

Introduction

Software Architecture for MBS Simulation

Linear Algebra Implementations

Parallelization

Integration with MATLAB/Simulink

Multirate Co-simulation Methods

Conclusions and Future Research

Conclusions and future research

- A modular software tool for MBS dynamic simulation has been built
 - Open-source, object-oriented, implemented in C++
 - Extensible, through the addition of new modules

Optimization of MBS simulation codes explored through

- Streamlining of linear algebra routines
- Non-intrusive parallelization
- Communication with math software and block diagram simulators
- Multirate integration

Conclusions and future research

- Future research lines will focus on
 - Assessment of the validity of the tested optimization techniques in recursive and semi-recursive formulations
 - Co-simulation of complex multiphysics systems
 - Research on a way to determinate beforehand the optimal co-simulation scheme when multirate techniques are introduced
 - Definition of general purpose indicators of the quality of the results of the co-simulation

http://lim.ii.udc.es

Publications

- The research conducted in this thesis has yielded the following papers
 - M. González, F. González, D. Dopico and A. Luaces. On the effect of linear algebra implementations in real-time multibody system dynamics. *Computational Mechanics*, 41(4):607-615. 2008.
 - F. González, A. Luaces, U. Lugrís and M. González. Non-intrusive parallelization of multibody system dynamic simulations. *Computational Mechanics*, 44(4):493-504. 2009.
 - F. González, M. González and A. Mikkola. Efficient coupling of multibody software with numerical computing environments and block diagram simulators. *Multibody System Dynamics*, online first. 2010.
 - F. González, M.A. Naya, A. Luaces and M. González. On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Submitted to *Multibody System Dynamics* in March, 2010 (undergoing revision process).

EFFICIENT IMPLEMENTATIONS AND CO-SIMULATION TECHNIQUES IN MULTIBODY SYSTEM DYNAMICS

Francisco Javier González Varela

Doctoral thesis

University of A Coruña

Ferrol, May 3rd, 2010

