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1 – Motivations

Laboratorio de Ingeniería Mecánica (LIM).

Specialized in real–time simulations of rigid and flexible multibody systems

Fig. 1 – Real–time simulations of
vehicles

Fig. 2 – Real–time simulations of
excavators

Fig. 3 – Real–time simulations of
container cranes

Fig. 4 – Human–In–The–Loop
simulators of excavators
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1 – Motivations

Multibody dynamics analysis in the automotive field.
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1 – Motivations

Objectives.

“Without validation of the vehicle dynamics there is only speculation that a
given model accurately predicts a vehicle response”

A.H. Hoskins and M. El-Gindy, “Technical report: Literature survey on driving simulator validation studies”,
International Journal of Heavy Vehicle Systems, vol. 13 (3), pp. 241–252, (2006)

new insigths into
the automotive re-

search line of the LIM

reliability and validity of the
modeling procedure and

MB formulation to simulate
comprehensive vehicle models

state estimation using
MB models applied
to vehicle dynamics
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2 – Vehicle field testing

Validation methodology.
based on the validation methodology developed by the VRTC (Vehicle Research and
Test Center) for the NADS (National Advanced Driving Simulator)
composed of 3 main phases

1 – experimental
data collection

vehicle field testing

maneuvers → broad range of
vehicle operating conditions

repetitive maneuvers to
determine the random
uncertainty

experimental post–processing

2 – vehicle parameter
measurement

parameter
measurements for the
MB model and the
subsystem models

3 – simulation predictions
vs experimental data

simulations using the same
control inputs that were
measured at the 1st phase

comparisons between the
simulation & experimental
results

Fig. 5 – NADS bay
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2 – Vehicle field testing

Diagram of the iterative validation methodology.
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2 – Vehicle field testing

The XBW vehicle prototype.

self–developed from scratch

on–board digital acquisition system

longitudinal and lateral maneuver repetition
capability

Mechanical characteristics.

tubular frame

internal combustion engine (4 cylinders, 2–barrel
carburator)

automatic gearbox transmission

front suspension → double wishbone

rear suspension → MacPherson

tyres → Michelin E3B1 Energy 155/80 R13

Fig. 6 – Design and manufacturing

Fig. 7 – XBW vehicle prototype
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2 – Vehicle field testing

The by–wire systems of the prototype.

SBW → steer–by–wire

TBW → throttle–by–wire

BBW → brake–by–wire

Extra sensors.

Measured magnitudes Sensors
vehicle accelerations (X,Y,Z) accelerometers (m/s2)
vehicle angular rates (X,Y,Z) gyroscopes (rad/s)
vehicle orientation angles inclinometers (rad)
wheel rotation angles hall–effect sensor (rad)
brake line pressure pressure sensor (kPa)
steering wheel and steer angles encoders (rad)
engine speed hall–effect sensors (rad/s)
steering torque inline torque sensor (Nm)
throttle pedal angle encoder (rad)
rear wheel torque wheel torque sensor (Nm)

Steering wheel

Precision gearbox

Coreless DC motor

Precision gearbox
Torque sensor

Encoder B

Rack and pinion gear system

Encoders A

Fig. 8 – Steer–by–wire system

Fig. 9 – Throttle–by–wire
system

Fig. 10 – Brake–by–wire system
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2 – Vehicle field testing

Driver’s force feedback of the SBW.

objective → accurate torque feedback to the
driver

problem → flexibility, backlash & friction

solution → highly accurate model of the
assembly amplifier–motor–gearbox

future work → model based torque controller

4 Quadrant Linear 
Servoamplifier PMDC Motor Gearbox Steering Wheel

1
23

4

Fig. 11 – Scheme of the modeling

Fig. 12 – Steering wheel system

Fig. 13 – CAD model of the steering wheel
system
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2 – Vehicle field testing

7 repetitions of a low speed straight–line maneuver.
total distance = 63.5 m
max speed = 23 km/h

Mechanical Engineering Laboratory, University of La Coruña 13/48



2 – Vehicle field testing

6 repetitions of a low–speed J–turn maneuver.
total distance = 59.6 m
max speed = 18 km/h
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3 – Vehicle modeling and simulation environment

Vehicle modeling.

Type of coordinates : natural + some relative coordinates (angles & distances)
MB formulation : index–3 augmented Lagrangian formulation with

mass–damping–stiffness–orthogonal projections
Bodies / Variables : 18 → all the vehicle bodies / 168 → points and vectors
Steering : kinematically guided
Forces : gravity forces, tire forces, engine torque, brake torques
Degrees of freedom : 14 → suspension systems (4)

chassis (6)
wheels (4)

Fig. 14 – CAD model of the prototype Fig. 15 – Points & vectors of the MB model
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3 – Vehicle modeling and simulation environment

Efficient MB formulation developed and used at LIM.
index–3 augmented Lagrangian formulation with mass–damping–stiffness–orthogonal
projections
integration → the trapezoidal rule and the Newton–Raphson method

predictor →
q, q̇, q̈

eq. of motion →

f =
∆t2

4
(Mq̈ +

ΦTq αΦ + ΦTq λ − Q)

tangent matrix →
fq = M +

∆t

2
C +

∆t2

4
(ΦTq αΦq + K)

first order
approx. →
fq∆q = −f

trap. rule
&

λ = λ + αΦ

eq. of motion →

f =
∆t2

4
(Mq̈ +

ΦTq αΦ + ΦTq λ − Q)

tangent matrix →
fq = M +

∆t

2
C +

∆t2

4
(ΦTq αΦq + K)

error <
min

projections in velocities →

fqq̇ =

[
M +

∆t

2
C +

∆t2

4
K
]

q̇∗ − ∆t2

4
ΦTq αΦt

projections in accelerations →

fqq̈ =

[
M +

∆t

2
C +

∆t2

4
K
]

q̈∗−∆t2

4
ΦTq α(Φ̇qq̇+Φ̇t)

t = t+ ∆t

no

yes
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3 – Vehicle modeling and simulation environment

Tire model.

part of the empirical and physical
TMeasy model

first–order dynamics → longitudinal
and lateral deflections

transition to stand–still → stick–slip
behavior

tire curves → linearized model

Fig. 16 – Points & vectors for the tire modeling

Fig. 17 – Longitudinal deformation of the tire

Fig. 18 – Lateral deformation of the tire
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3 – Vehicle modeling and simulation environment

Road profile.

topographical survey of the test track with a total station
300 points for a track of 80 meters long
interpolation of the scattered points
Delaunay triangulation → mesh of triangles for the collision detection

Fig. 19 – Total station used for
the topographical survey
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Fig. 20 – 3D scattered points Fig. 21 – 3D model of the test
track
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3 – Vehicle modeling and simulation environment

Collision detection.

tire normal force → function of the
inter–penetration of the stepped
triangles of the ground mesh

4 spheres for the collision geometry of
the tires

Simulation environment.

realistic graphical environment of the
campus

I self–developed 3D environment
I open–source 3D graphics toolkit (C++)

inclusion of the topographical survey of
the test track

Fig. 22 – 3D model of the test track
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4 – Validation results

MB model inputs.
averaging of the experimental data
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Fig. 23 – Repetitions (wheel torque)
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Fig. 24 – Mean and CI (wheel torque)

Confidence intervals.
assumption → the uncertainty follows a normal distribution
small number of samples → Student’s t distribution

C.I. bounds: x̄±tn−1
(1−α/2)·

S√
n

sample mean → x̄ =
1

n

n∑
i=1

xi sample variance → S
2

=
1

(n− 1)

n∑
i=1

(xi − x̄)
2

(1− α/2) critical value for the t
distribution with (n− 1) degrees of freedom
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4 – Validation results

Simulation of the low speed straight–line maneuver.

MB model inputs → averaged experimental data

road profile → topographical survey

Mechanical Engineering Laboratory, University of La Coruña 23/48



4 – Validation results

Validation results for the low speed straight–line maneuver.
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Fig. 25 – Left front wheel speed
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Fig. 26 – Roll rate of the chassis
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Fig. 27 – Longitudinal acceleration of the chassis
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4 – Validation results

Simulation of the low–speed J–turn maneuver.

MB model inputs → averaged experimental data

road profile → topographical survey
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4 – Validation results

Validation results for the low speed J–turn maneuver.
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Fig. 28 – Yaw rate of the chassis
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Fig. 29 – Lateral acceleration of the chassis
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Fig. 30 – Roll rate of the chassis
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Fig. 31 – Longitudinal acceleration of the
chassis
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5 – State observers

Model running in real–time with the same inputs

State observers for mechanical systems based on Kalman filters

Real Mechanism

sensors
OUTPUTS
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DISTURBANCES
unknown
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INPUTS
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Real–time model

variables of
the model
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sensors of
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5 – State observers

State estimation in mechanical systems.

Advantages

new sensors virtual sensors

ubiquitous
magnitude reduced costs reduced

failure rate

minimum set
of sensors

The more detailed the model is,
the more it provides information about the motion of the mechanism

Past researches
I Kalman filter + linear mechanical systems
I linearized Kalman filter + nonlinear mechanical

systems

 lack of generality
linear models
simple nonlinear models

Mechanical Engineering Laboratory, University of La Coruña 29/48



5 – State observers

First implementations using a 4–bar linkage and a VW Passat.

Recent researches at the LIM
I extended Kalman filter + real–time MB

models

}
general approach
complex nonlinear models

A

B

C

D

s

Fig. 32 – 4–bar linkage Fig. 33 – VW passat & model & state observer w/
MB model
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5 – State observers

Description.
simple mechanism: 5–bar linkage → 2 DOFs

mechanism parameters → experimental
measurements

parameters of the sensors → characteristics from
off–the–shelf sensors

MB Modeling.

natural coordinates (8 variables, 6 constraints, 2
DOFs)
MB formulations

I independent coordinates → projection matrix–R
method

I dependent coordinates → penalty formulation

simulation of the real mechanism for
comprehensive comparisons

known errors between the real mechanism and
its MB model → lengths, masses, inertias. . .

Fig. 34 – 5–bar linkage image

Fig. 35 – 5–bar linkage modeling scheme
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5 – State observers

Free motion simulation.

Drift of the model due to errors in the parameters of the model

real mechanism
(matrix–R, trap. rule)

model
(matrix–R, trap. rule)

Mechanical Engineering Laboratory, University of La Coruña 32/48



5 – State observers

Comparison of NL Kalman filters. SPKF

EKF ,UKF ,SSUKF

What is it? de facto NL Kalman filter recent NL Kalman filters

Why to use it ? efficiency accuracy and easy implementation

Which form ? continuous discrete

How does it
work ?

state estimates → propaga-
tion through NL system.
mean and state estimation
uncertainty → propagation
through linearization

state estimates → propagation
through NL system.
mean and state estimation uncer-
tainty → propagation of sigma–
points through the NL system

Assumptions additive white Gaussian noises

System
dynamics

ẋ(t) = f(x(t)) + w(t)

xk+1 = φk(xk) + wk

first order differential equations
with independent states

nonlinear difference equations
with independent states
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5 – State observers

The extended Kalman filter – EKF.

ẋ(t) = f(x(t))

first order ODEs

6= Mq̈ + ΦT
q λ = Q

Φ = 0

first order DAEs

x =

[
z(t)
w(t)

]
z̈ = (RTMR)−1[RT(Q−MṘż)]

=

[
ż(t)
ẇ(t)

]
=

[
w

(RTMR)−1[RT(Q−MṘż)]

]

integration
implicit integrator
trapezoidal rule

duplication of variables
(positions & velocities)

independent coordinates
state space reduction
method matrix R
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5 – State observers

The extended Kalman filter – EKF.

˙̂x(t) = f(x̂(t), t) + K̄[y(t)− ŷ(t)]state estimates

K̄(t) = P(t)H[1]T(t)R(t)Kalman gain

Ṗ(t) = F[1]P(t) + P(T)F[1]T + GQ(t)GT − K̄R(t)K̄Riccati equation

H[1](t) ' ∂h(x, t)
∂x

F[1](t) ' ∂f(x, t)
∂x

linear approximations

F[1](t) =

 0 I
∂(M̄−1Q̄)

∂z
∂(M̄−1

Q̄)

∂w

 ' [ 0 I
−M̄−1RT(KR + 2MRqRẇ) −M̄−1RT(CR + MṘ)

]
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5 – State observers

The unscented Kalman filter – UKF.

xk+1 = φk(xk)

nonlinear recurrences
with independent states

6= Mq̈ + ΦT
q λ = Q

Φ = 0

first order DAEs

z̈ = (RTMR)−1[RT(Q−MṘż)]

= integration

independent coordinates
state space reduction
method matrix R

q̈ = (M + ΦT
q αΦ)−1[Q−ΦT

q α(Φ̇qq̇ + 2ζωΦ̇ + ω2Φ)]

= integration

dependent coordinates
penalty formulation
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state space reduction
method matrix R

q̈ = (M + ΦT
q αΦ)−1[Q−ΦT

q α(Φ̇qq̇ + 2ζωΦ̇ + ω2Φ)]

= integration

dependent coordinates
penalty formulation
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5 – State observers

The unscented Kalman filter – UKF.
time–update equations (always executed)

x̂−k =

2L∑
i=0

wm
i χi,k|k−1

χk|k−1 = φk−1(χk−1)

χi,k−1 =


x̂k−1
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)
i
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i

P−xk =

2L∑
i=0

ωc
i (χk|k−1 − x̂−k )(χk|k−1 − x̂−k )T

Fig. 36 – Set of sigma–points (2 dim. GR variable)

measurement–update equations (executed if
information from the sensors is available)

x̂k = x̂−k + K̄k(yk − ŷ−k )

K̄k = PxkykP−1
ỹk

ŷ−k =

2L∑
i=0

ωm
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żk
z5k

z̈k, żk, zk
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5 – State observers

The spherical simplex UKF.

same equations as for the UKF
reduced set of sigma–points

I UKF → (2L+1) sigma–points
I SSUKF → (L+2) sigma–points
I equations of the reduced set of sigma–points

χj
i =



[
χj−1

0

0

]
for i = 0 χj−1

i

− 1√
j(j + 1)w1

 for i = 1, . . . , j 0j−1

1√
j(j + 1)w1

 for i = j + 1 Fig. 37 – Reduced set of sigma–points (2
dim. GR variable
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5 – State observers

Free motion simulation.

Drift of the model due to errors in the parameters of the model

The observers estimate correctly the motion of the real mechanism

real mechanism
(matrix–R, trap. rule)

model
(matrix–R, trap. rule)

EKF
(matrix–R, trap. rule)

UKF
(matrix–R, trap. rule)

SSUKF
(matrix–R, trap. rule)

SSUKF
(matrix–R, RK2)

SSUKF
(penal, RK2)
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5 – State observers

Performance comparisons of the filters → efficiency vs RMSE.

Simulation
time (%)100 125 150 175 200 225 250

1

2

3

4
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10

R
M
SE

multi–rate
case

non multi–
rate case

non multi–rate
∆tinteg = 2ms
∆tsensors = 2ms

multi–rate
∆tinteg = 2ms
∆tsensors = 6ms

EKF (matrix–R, trap.
rule)

UKF (matrix–R, trap.
rule)

SSUKF (matrix–R, trap.
rule)

SSUKF (matrix–R, RK2)

SSUKF (penal, RK2)
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5 – State observers

STATE OB-
SERVERS

NL Kalman filters
with MB models

Data
acquisition
system

NL
Kalman
filters

EKF

SPKF

UKF

SSUKF

MB
formulation

indepen-
dent
coord.

matrix–
R

method

depen-
dent
coord.

penalty-
formu.

integrators

explicit

RK2

implicit

TR

mechanism

param-
eters

sensors
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5 – State observers

Pros & Cons.

EKF
I Pros → most efficient filter with independent coordinates
I Cons → involved and error–prone calculation of the Jacobian, not suitable to employ

with dependent coordinates, not multi–rate

SPKFs
I Pros → easiest implementation, possible use of dependent coordinates, highest

accuracy
I Cons → high computational cost due to the sigma–points
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6 – Outline

1 Motivations

2 Vehicle field testing

3 Vehicle modeling and simulation environment

4 Validation results

5 State observers

6 Conclusions
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6 – Conclusions

Vehicle field testing.

1 X-by-wire vehicle prototype from scratch
2 highly detailed model of the driver’s force feedback system
3 repetitions of 2 reference manoeuvres in the campus

Vehicle modeling and simulation environment.

1 real-time 14 DOFs MB model
2 modelling of subsystems → tire, brake
3 topographical survey of the test track
4 realistic 3D simulation environment
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6 – Conclusions

Validation results.

1 confidence intervals for the experimental data
2 simulation of the test manoeuvres using the experimental data
3 evaluation of the accuracy of the MB model

State observers.

1 use of MB models with the extended Kalman filter
2 application to a 4–bar linkage and a VW Passat
3 use of MB models with SPKFs filters
4 implementation using a 5–bar linkage
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6 – Conclusions

Future research.

1 field testing
I manoeuvres at higher speeds → new test track
I GPS RTK for real–time positioning of the vehicle

2 vehicle modelling and simulation environment
I better characterization of the tire curves
I Human–In–The–Loop simulation using experimental inputs

3 state observers
I EKF in discrete form
I research on the observability of MB models
I tests of the UKF/SSUKF with more complex mechanisms
I implementation using the MB model of the XBW prototype

Mechanical Engineering Laboratory, University of La Coruña 46/48



6 – Conclusions
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