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Abstract: The continuously improved performance of personal 
computers enables the real-time motion simulation of complex 
multi-body systems, such as the whole model of an automobile, 
on a conventional $1,200 PC, provided the adequate formulation 
is applied. There exist two big families of dynamic formulations, 
depending on the type of coordinates they use to model the 
system: global and topological. The former leads to a simple and 
systematic programming while the latter is very efficient. In this 
work, a hybrid formulation is presented, obtained by combination 
of one of the most efficient global formulation and one of the 
most systematic topological formulation. In this way, it is 
developed a new formulation which shows, at the same time, 
easiness of implementation and a high level of efficiency. In order 
to verify the advantages that the new formulation has over its 
predecessors, the analysis of three examples is carried out using 
the three formulations and the corresponding results are 
compared: a planar mechanism which goes through a singular 
position, a car suspension with stiff behaviour, and a 6-dof robot 
with changing configurations. 
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1   Introduction  
Some years ago, the dynamic simulation of complex 
multibody systems in real-time was an objective difficult 
to achieve. Not only the fastest formulations available had 
to be applied, but also powerful and expensive hardware 
platforms (over $30,000) were needed. Nowadays, thanks 
to the enormous improvement experimented by the PC 
performance, either in calculation as well as in graphics, 
such complex multibody systems as, for example, the full 
model of a car, can be simulated in real-time on low cost 
PCs ($1,200). However, the field of multibody dynamics 
incessantly evolves and, if some years ago the objective 
was to simulate the motion of a mechanical system 
consisting of several rigid bodies, today the goal has been 
put farther, and flexible bodies as well as contact and 
impact effects should be considered, to mention just some 
examples. Hence, new super-efficient dynamic algorithms 
are required, capable of reducing at the minimum the 
calculation time needed, so that those simulations of 
complex systems modeled in a realistic way can be 
achievable. 

Methods developed so far for the dynamic analysis of 
multibody systems can be grouped into two big families: 
global and topological. 

Global methods[1,2] are characterized by the use of a set 
of coordinates that perfectly defines the position of each 
body. Due to this fact, the proper dynamic terms (applied 
and inertia forces) can be independently calculated for 
each body and, later on, be assembled to form the 
corresponding terms of the whole mechanism. On the other 

hand, the kinematic terms (constraint equations which 
relate the variables) are established in a systematic way for 
each body and kinematic pair. Consequently, this family of 
methods leads to simple and general algorithms of easy 
implementation but not very efficient. 

Topological methods[1,2] make use of relative 
coordinates in order to model the mechanism, so that the 
position of each body is defined with respect to the 
previous one in the kinematic chain. This fact invites to 
take profit of the chain topology to produce algorithms in 
which the kinematic as well as the dynamic terms are 
calculated by means of efficient recursive procedures. 
However, these kind of formulations are usually rather 
involved and difficult to generalize. 

This work is aimed at obtaining a hybrid formulation 
as combination of one global and another topological, so 
that the advantages of both types of formulations are kept, 
while their inherent drawbacks avoided. 

 
2   Starting Formulations  
Unlike the usual cases described above, two formulations, 
one global and another topological, have been developed 
recently that, possessing the advantages of their respective 
families, avoid the most part of the corresponding 
drawbacks. 

The global method[3] uses natural (global and 
dependent) coordinates to model the multibody system. It 
consists of an index-3 augmented Lagrangian formulation, 
which is combined with the numerical integrator known as 
the trapezoidal rule, to produce a non-linear algebraic 
system of equations with the dependent positions as 
unknowns. Such system is solved through the 
Newton-Raphson iteration. Once convergence is attained 
into the time-step, velocities and accelerations are cleaned 
by means of mass-damping-stiffness-orthogonal 
projections. The result is a robust and efficient algorithm. 

The topological method, called semi-recursive[4], 
defines a double set of coordinates in the modeling: six 
coordinates (three translations plus three rotations) for 
each body, and the relative coordinates of the whole 
mechanism. The dynamic equations are expressed in the 
coordinates  of the bodies and, then, a velocity projection is 
carried out which leads to a set of motion equations in the 
relative coordinates. In order to calculate the leading 
matrix and the right-hand-side of that set of equations, a 
recursive technique which accumulates forces and inertias 
is used. However, as it happens with any topological 
method, closed-loops should be opened and, later on, the 
corresponding constraints imposed. Is in this step where 
the semi-recursive method finds problems, as it chooses to 
perform a second velocity projection (in order to arrive at a 



 

set of motion equations in independent coordinates), which 
suffers from the usual drawbacks of this technique: range 
of validity of the independent set of coordinates selected 
and lack of robustness in singular positions. To avoid 
differences coming from the integration scheme, the same 
procedure as for the global formulation is used: the 
integrator (trapezoidal rule) equations are combined with 
the motion equations, thus obtaining a non-linear algebraic 
system of equations where the independent positions are 
the unknowns, which is solved by means of the 
Newton-Raphson iteration. The result is an easy and 
general algorithm. 

 
3   The Proposed Formulation  
In the proposed approach, the dynamic equations are stated 
according to the index-3 augmented Lagrangian 
formulation[3] in the form, 

 QλΦΦΦzM zz =++ *ttα&&   (1) 

where z are the relative coordinates, M is the mass matrix 
of the mechanism expressed in terms of the relative 
coordinates, Φ is the constraints vector due to the closure 
conditions of the loops, zΦ  is the Jacobian matrix of the 
constraints, α is the penalty factor, Q is the vector of 
applied and velocity-dependent forces, and *λ  is the 
vector of Lagrange multipliers obtained from the following 
iteration process (given by sub-index i, while sub-index n 
stands for the time-step): 

 1
**
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where the value of *
0λ  is taken equal to the *λ  worked out 

in the previous time-step. 
In order to determine the dynamic terms M and Q, a 

second set of coordinates is defined. It can be expressed at 
velocity level for each body of the system in the form, 
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being s&  the velocity of the point of the body which in that 
particular time is coincident with the fixed frame origin, 
and ω  the angular velocity of the body. 

When expressed in terms of such coordinates, the 
dynamic terms for a single body are[4], 
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wherein m is the body mass, 3I  is the 3x3 identity matrix, 
g is the global position of the mass center of the body, g~  is 
the dual anti-symmetric matrix of g, J is the inertia tensor 
of the body with respect to a reference frame parallel to the 
global one at the mass center of the body, f is the vector of 
forces applied to the body, and n is the vector of applied 
moments with respect to the mass center of the body. 
 

 
Figure 1 Example of mechanism topology 

 
A matrix R can be defined so that the following 

relationship stands, 

 zRZ &=  (6) 

where now Z includes the body coordinates of all the 
bodies of the mechanism. Due to the body coordinates 
adopted, the form of matrix R is rather special, as shown in 
what follows for the example illustrated in Figure 1. 

 THR =  (7) 

with, 
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and, 
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where 6I  is the 6x6 identity matrix and iR  are 6x1 
vectors. 

If the virtual power principle is applied, the dynamic 
equations of the system can be written as, 

 ( ) 0QZMZ =−&t*  (10) 

and substituting in Equation (10) the result of Equation (6) 
together with its derivative yields 

 ( )zRMQRzRMR tt &&&& −=  (11) 

which means that the mass matrix of the mechanism 
expressed in terms of the relative coordinates becomes, 

  RMRM t=  (12) 

and, analogously, the corresponding vector of applied and 
velocity-dependent forces is, 



 

 ( )zRMQRQ t &&−=  (13) 

If now the special form of matrix R described in 
Equations (7-9) is considered, M and Q can be rewritten as, 

 ( )HTMTHM tt=  (14) 

 ( )( )zHTMQTHQ tt &&−=  (15) 

Due to the particular structure of matrices T and H, the 
mass matrix of Equation (14) and the force vector of 
Equation (15) can be calculated through a very efficient 
recursive procedure. Hence, for the example of Figure 1, 
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where the sub-matrices are obtained as, 

 

4211

6544

322

33

55

66

MMMM

MMMM

MMM

MM

MM

MM

++=

++=

+=

=

=

=

 (17) 

and, 
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where the sub-vectors are obtained as, 
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So far, the calculation of the M and Q terms of 
Equation (1) has been addressed. The remaining term in 
that equation is the Jacobian matrix of the constraints zΦ , 
which implies the differentiation of the constraints vector 
with respect to the relative coordinates z. This can be easily 
done by applying the chain differentation rule as, 

 zqz qΦΦ =  (20) 

In the proposed method, natural coordinates[2] are used 
at the cut-points to impose the closure conditions of the 

loops. This means that the constraints are expressed in 
terms of such coordinates, named q in Equation (20). 
Therefore, the term qΦ  is the traditional Jacobian matrix 
of the constraints, when natural coordinates are used[2], 
while the term zq  simply represents the velocities of the 
natural coordinates q, when unit velocities are successively 
given to the relative coordinates z. 

Once the calculation of all the terms appearing in 
Equation (1) has been explained, the main thread of the 
proposed formulation can be taken again. 

As integration scheme, the implicit single-step 
trapezoidal rule has been adopted. The corresponding 
difference equations in velocities and accelerations are: 
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being ∆t the time-step and, 
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Dynamic equilibrium can be established at time step 
n+1 by introducing the difference equations (21) and (22) 
into the equations of motion (1), leading to a non-linear 
system of algebraic equations, where the 1+nz  are the 
unknowns, 

 ( ) 01 =+nzf  (25) 

Such system can be solved by the Newton-Raphson 
iteration, where the approximated tangent matrix is: 
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and the residual vector: 
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where C and K represent the contribution of damping and 
elastic forces of the system provided they exist. 

The procedure explained above yields a set of 
positions 1+nz  that not only satisfies the equations of 
motion (1), but also the constraint conditions 0=Φ . 
However, it is not expected that the corresponding sets of 
velocities and accelerations satisfy 0=Φ&  and 0=Φ&& , 
because these conditions have not been imposed in the 
solution process. To overcome this difficulty, 
mass-damping-stiffness -orthogonal projections in 
velocities and accelerations are performed. It can be seen 
that the projections leading matrix is the same tangent 
matrix appearing in equation (26). Therefore, 
triangularization is avoided and projections in velocities 
and accelerations are carried out with just forward 
reductions and back substitutions. 



 

If *z&  and *z&&  are the velocities and accelerations 
obtained after convergence has been achieved in the 
Newton-Raphson iteration, their cleaned counterparts z&  
and z&&  are calculated from, 
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for the velocities, and, 
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for the accelerations. 

 
4   Examples 
To show the advantages of the new proposed formulation, 
the following three examples have been solved through 
three approaches: the new formulation and the two starting 
ones. The implementation of all the cases has been carried 
out in the computing environment Matlab, which means 
that the reported CPU times would be drastically reduced if 
the same programs were written in Fortran or C languages. 
 
4.1  Planar mechanism 
The first example is a one degree-of-freedom assembly of 
two four-bar linkages, illustrated in Figure 2, which has 
been proposed[5] as an example to test the performance in 
cases where the mechanism undergoes singular 
configurations. When the mechanism reaches a horizontal 
position, the number of degrees of freedom increases 
instantaneously from 1 to 3. All the links have a uniformly 
distributed unit mass and a unit length. The gravity force 
acts in the negative vertical direction. At the beginning, the 
links pinned to the ground are in vertical position and 
upwards, receiving a unit clockwise angular velocity. 
 

 
Figure 2 Double four-bar mechanism 

 
The simulation lasts for 10 s, during which the 

mechanism goes through the singular position ten times. 
Table 1 shows the obtained results by using the three 
methods for different time-steps (∆t). The error is 
measured as the maximum deviation, in J, suffered by the 
system energy. The time is the CPU time, in s, required to 
carry out the simulation. 

Table 1 Results for the double four-bar mechanism 

 Global Topological Hybrid 
∆t Error Time Error Time Error Time

0.01 -0.21 0.86 no convergent -0.01 3.20
0.03 -0.83 0.37 no convergent -0.12 1.32
0.05 -9.03 0.26 no convergent -0.34 0.83
0.1 wrong results no convergent -1.34 0.52

 

 
First of all, it can be seen that the topological method 

cannot accomplish the integration. It is due to the second 
velocity projection, which cannot be performed at the 
singularity. It can also be observed that the global method 
is more efficient than the hybrid one for the same time-step, 
while the hybrid method is found to be more accurate and 
robust, as it shows an smaller error for the same time-step 
and, moreover, works for larger time-steps than the global 
one. Therefore, if the efficiency of both methods is 
compared for the same level of error, similar performances 
would be obtained. It should be noted that, in this example, 
the number of global coordinates is 6, while the number of 
relative coordinates is 5. It is not then a case in which the 
hybrid method can get a great advantage due to the reduced 
number of coordinates with respect to the global method 
(this will occur in large examples).  
 
4.2  Car suspension  
The second example, shown in Figure 3, is the suspension 
system of the Iltis vehicle[6], which was proposed as a 
benchmark problem by the European automobile industry 
to check multibody dynamic codes. 
 

 
Figure 3 Iltis suspension 

 
The suspension starts moving from at rest conditions at 

a speed of 5 m/s, and its position does not correspond to the 
static equilibrium. Thus, it freely oscillates until the static 
equilibrium position is reached. After three seconds, the 
suspension drops down a kerb of 10 cm height, and 
afterwards oscillates until the equilibrium is reached again. 
The complete analysis lasts for 7 s. It is carried out using 
the three methods, the performance results being depicted 
in Table 2. This time the error is obtained as the difference, 
in J, between the lost gravitational energy and the energy 
dissipated by the shock-absorber. 

Table 2 Results for the Iltis suspension 

 Global Topological Hybrid 
∆t Error Time Error Time Error Time

0.001 -43.13 17.8 -43.49 45.7 -42.05 43.2
0.01 -43.45 2.04 -44.06 6.04 -42.80 5.44
0.03 -57.96 0.84 no convergent no convergent
 
In this case, unlike the previous one, the system shows 

a stiff behaviour, since the block representing one fourth of 
the whole vehicle has great inertia and, therefore, moves at 
slow frequency, while the wheel possess little mass and, 
subsequently, moves at high frequency. Firstly, it can be 
seen that the topological method is the least efficient and 
robust. On the other hand, the global method is less 



 

accurate but more robust than the hybrid one, since it 
works for larger time-steps. Regarding efficiency, the 
global method keeps the same advantage with respect to 
the hybrid one than in the previous example, since 25 
global coordinates have been used face to 8 relative 
coordinates. It is supossed that many more variables are 
needed, so that the global method requires a huge effort to 
solve the equation system, thus balancing its advantage. 
 
4.3  Serial robot 
The PUMA robot, designed by Unimation & Co. and 
shown in Figure 4, is an example of 6 degrees-of-freedom 
serial manipulator. It has been often used by different 
authors[7] to illustrate methods and procedures in several 
areas of robotics. In this work, the robot has been taken as 
an example of multibody system undergoing changing 
configurations. 
 

 
Figure 4 PUMA robot 

 
Starting from rest, torques at the six hinges of the robot 

are provided so that, in a time of 2 s, it arrives at a new 
position in the space, again in rest conditions. Once the 
new position has been reached, a point of the hand is 
attached to the ground, so that the robot loses 3 
degrees-of-freedom. In this new configuration, torques are 
applied to the three rotational pairs of the hand, and a 
second manoeuvre, which lasts 4 s and ends with rest 
conditions, is performed. Finally, the robot is released 
from its attachment and returned in 2 s to the initial 
position by torques acting at the six revolute joints, once 
more finishing the manoeuvre at rest conditions. Therefore, 
the total simulation time is 8 s. Table 3 illustrates the 
results obtained when applying the three methods, where 
the error has been calculated as the distance between the 
hand positions at initial and final times (which, ideally, 
should be coincident). 

Table 3 Results for the PUMA robot 

 Global Topological Hybrid 
∆t Error Time Error Time Error Time

0.01 0.53 6.25 0.26 3.05 0.34 4.02
0.05 3.4 1.92 1.5 1.20 1.8 1.74
0.1 no convergent 3.2 0.78 no convergent

 
This time, the global method shows the worst 

behaviour either in efficiency, accuracy or robustness, 
probably because the number of global coordinates defined 

to model the robot is 45 (sparse matrix techniques have not 
been used in this case), far from the 6 corresponding 
relative coordinates needed. Comparing the topological 
and the hybrid methods, some advantage is attained by the 
former with respect to the latter. It must be pointed out that 
the integration scheme used for the three methods is a 
single-step one. This fact favours the topological method, 
since every time the configuration changes, also does the 
number of integrable variables when using that method (it 
is not the case with the two others). If a multi-step 
integrator had been used, a considerable extra-effort would 
have been needed when applying the topological method, 
in order to restart the integration whenever a change in the 
configuration had place. 
 
5   Conclusions 
Based on the results obtained for the three studied 
examples, the conclusions can be drawn as follows: 
(1) A new real-time formulation for the dynamics of 

multibody systems has been presented, which 
encompasses high ranks of efficiency, accuracy, 
robustness and easiness of implementation. 

(2) The method combines a semi-recursive formulation 
based on velocities projection and a penalty 
formulation for closed-loops consideration. 

(3) The method is more robust that its semi-recursive 
predecessor, as it can handle singular positions. 

(4) The method is more efficient that its global ancestor 
for a similar level of accuracy when the number of 
global coordinates becomes large. 
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