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ABSTRACT 

The continuously improved performance of personal 
computers enables the real-time simulation of the dynamics 
of complex multibody systems, such as the whole model of 
an automobile, on a conventional PC, provided the adequate 
formulation is applied. Real-time performance is critical for 
some industrial applications, like those requiring human- 
and/or hardware-in-the-loop simulation: flight and driving 
simulators, vehicle active control systems, virtual drivers or 
pilots, are typical examples of such applications. 

Among the different methods proposed for real-time 
dynamics of multibody systems, penalty and augmented 
Lagrangian techniques have been widely used, in order to 
convert the system of differential algebraic equations (DAE) 
into a system of ordinary differential equations (ODE), 
whose integration presents a lower level of difficulty. In both 
cases, penalty forces which are proportional to the violation 
of the constraints at position, and/or velocity, and/or 
acceleration level, are included in the equations of motion in 
order to ensure the satisfaction of the constraints and, if 
possible, of their derivatives. 

In principle, consideration of penalty forces which are 
only proportional to the violation of the constraints at 
position level is the most attractive option, since the velocity 
level implies energy dissipation, and the acceleration level is 
computationally expensive. However, the solutions obtained 
through such option show unstable behavior due to the 

progressive and unbounded growth of the constraints energy, 
effect even more acute in the case of augmented Lagrangian 
formulations. 

Several methods have been proposed in the literature in 
order to stabilize the mentioned solutions. In a previous 
work, two of those methods were revised and their respective 
stabilizing properties compared: an energy-momentum 
integrator, and the trapezoidal rule along with mass-
orthogonal projections of velocities and accelerations onto 
the constraints manifold. In both cases, natural coordinates 
were used for the modeling, and the equations of motions 
were stated through the augmented Lagrangian formulation. 
In this work, the same two methods are compared in terms of 
efficiency by simulating a large and realistic problem. 

 
 

1. INTRODUCTION 
Several considerations are important if we try to carry out 

fast and precise simulations in multibody dynamics: the 
choice of modeling coordinates, the choice of the dynamical 
formulation, and the numerical integration scheme along with 
the numerical implementation. All these matters are essential 
in order to decide whether a specific method is suitable for a 
particular purpose. 

Some of the most robust methods for the real-time 
dynamics of multibody systems make use of natural or fully 
Cartesian coordinates (Garcia de Jalon and Bayo (1994)) 



 
Proceedings of ACMD06 

A00589  

Copyright �2006 by JSME 

which are dependent by nature, and lead to systems of 
differential-algebraic equations of motion (DAE) (Brenan et 
al. (1989)). 

In order to solve such DAE in natural coordinates, 
different formulations have been developed, like Baumgarte 
stabilization (Baumgarte (1972)), penalty and augmented 
Lagrangian schemes (Bayo et al. (1988)), or velocity 
transformations (Wehage and Haugh (1982), Serna et al. 
(1982)). 

Formulations based on penalty and augmented 
Lagrangian methods have the advantages of being very 
simple, computationally inexpensive and very robust in the 
presence of singular configurations or redundant constraints 
(Bayo and Avello (1996)). 

Generally, it can be said that the choice of the dynamic 
formulation determines that of the numerical integrator. In 
this direction, different authors proposed several options to 
successfully integrate the equations arising from constrained 
multibody systems, using integrators coming from the field 
of structural dynamics (Garcia de Jalon and Bayo (1994), 
Geradin and Cardona (2001), Cuadrado et al. (2000)). 

In Bayo and Avello (1996), Cuadrado et al. (2000), the 
use of augmented Lagrangian techniques with penalty only at 
position level along with the trapezoidal rule was proposed. 
In order to guarantee the correct satisfaction of the 
constraints, velocity and acceleration projections were 
proposed. More recently, Cuadrado et al. (2004) proposed the 
use of augmented Lagrangian techniques with other 
integrators of the Generalized-α family along with 
projections, obtaining very good behavior for real-time 
applications. The advantages of the projections are the 
simplicity and that they can be used with a great variety of 
integrators. The projections are responsible for maintaining 
the stability of the formulation. 

On the other hand, other authors, Goicolea and Garcia 
Orden (2000), Garcia Orden and Goicolea (2000), Goicolea 
and Garcia Orden (2002), developed a formulation based on 
an energy conserving penalty scheme, enforcing the 
constraints at the position level, and applied it to the 
dynamics of multibody systems parametrized with natural 
coordinates. In this case, the use of penalty at position level 
has the advantage of enabling to derive the constraint forces 
from a potential function: the constraint energy. The 
formulation employs an energy-momentum integrator as 
integration scheme (Simo and Wong (1991), Gonzalez and 
Simo (1996)), so that the conservation of the total energy of 
the system is imposed by construction of the algorithm. Here, 
the stabilization of the penalty equations of motion arises in a 
natural manner from the integration scheme. 

 
 
2. AUGMENTED LAGRANGIAN FORMULATION 
Many different methods have been proposed in the literature 

for the dynamics of constrained mechanical systems. The 
formulation of the equations of a constrained mechanical 
system poses some numerical difficulties. These difficulties 
are, in general, different for each formulation and solution 
method, but are typically related to stability properties of the 
numerical scheme. Such problems motivate the interest in 
developing algorithms capable of providing stable and 
accurate solutions. 
In this work, we restrict ourselves to the methods based on 
the augmented Lagrangian formulation, which can be 
understood as a compromise between the Lagrange multiplier 
formulation, and the penalty formulations. 
 
 
2.1 Description of the formulation 

Let us consider a multibody system, with a configuration 
defined by a vector n∈q R  of natural coordinates. The 
system is also subjected to m  holonomic constraints 

m∈Φ R , involving the different points and vectors of the 
system. The dynamic equations constitute an index-3 DAE 
system of n m+  equations given by: 

 

 
T T *α+ + =

=
q qMq Φ Φ Φ λ Q

Φ 0
 (1) 

 
where M  is the mass matrix, Q  is the generalized forces 
vector of the system, *λ  represents the Lagrange multiplier 
vector, α  is a penalty factor, and qΦ is the Jacobian matrix 
of the constraints vector. 

In practice, the augmented Lagrangian formulation, 
transforms the DAE into a system of ordinary differential 
equations (ODE), defining an iterative update for the 
multipliers, given by * *

1i i α+ = +λ λ Φ  verifiying that 
*
i →λ λ  as i →∞ , which means that, in the limit, the 

iterative scheme for the Lagrange multipliers leads to the true 
Lagrange multipliers. Moreover, the iteration update for the 
multipliers, prevents introducing the Lagrange multipliers as 
unknowns of the problem, so that the system of n m+  
equations is replaced by another one of size only n . 

 
 T T * *( 1) *( ), i iα α++ + = = +q qMq Φ Φ Φ λ Q λ λ Φ  (2) 

 
In order to solve the nonlinear equations (2), the use of 

Newton-Raphson schemes is recommended, and then it is 
possible and convenient to mix up the Newton-Raphson 
iteration and the Lagrange multipliers iteration. 

Several authors have used methods based on the 
equations (2) for the dynamics of multibody systems. This 
equations show a slightly unstable behavior with most of the 
commonly used integrators, characterized by the drift-off 
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effect and a progressive and unbounded growth of the total 
energy of the system. 

 
 
3. INDEX-3 AUGMENTED LAGRANGIAN WITH 
PROJECTIONS 

This formulation was presented in Cuadrado et al. (2000), 
Cuadrado et al. (2001). It is based on the an augmented 
Lagrangian equations (2). 

The augmented Lagrangian formulation can be combined 
with any standard integrator, and achieves the exact 
fulfillment of the position constraints, but usually exhibits an 
unstable behavior, even with ODE integrators suited to stiff 
systems. 

Based on previous results obtained in the literature, it can 
be said that the numerical solution of a constrained 
mechanical system seems to be more stable on the constraints 
manifold than off it. Based on this fact, the exact 
enforcement of the constraints at velocity and acceleration 
levels ( =Φ 0  and =Φ 0  respectively), which is not 
accomplished by the augmented Lagrangian formulation (2), 
is expected to stabilize the numerical solution. 

The way to enforce the constraints proposed in this 
section is the so-called coordinate projection technique. 

The velocities and accelerations coming from the 
integrator, are projected onto the constraints manifolds 

=Φ 0  and =Φ 0  respectively, by means of the following 
expressions: 

 

 ( )T * T
tk kα α+ = −q q qP Φ Φ q Pq Φ Φ  (3) 

 ( ) ( )T * T
tk kα α+ = − +q q q qP Φ Φ q Pq Φ Φ q Φ  (4) 

 
where P is the projection matrix, * * and q q are the velocities 
and accelerations coming from the integrator, and q q  are 
the projected velocities and accelerations, and k is a real 
constant. 

The choice of the projection matrix P is of key 
importance, since it determines the numerical stability of the 
solution. Moreover, a correct choice of this matrix can 
guarantee the unconditional energy-dissipative character of 
the projections, which proves to be very efficient for 
stabilizing the system. 

By a careful choice of the projection matrix P and the real 
constant k, it is also possible to equal the LHS of the linear 
systems (3) and (4), ( )Tkα+ q qP Φ Φ , to the tangent matrix 
of the Newton-Raphson iteration for the nonlinear system (2), 
matrix which must be factorized only once, thus saving much 
time at the projection stage. 
 

 
4. CONSERVING AUGMENTED LAGRANGIAN 
FORMULATION 

The point of departure of the approach described in this 
section, is the energy-momentum formulation presented in 
Garcia Orden and Goicolea (2000), Goicolea and Garcia 
Orden (2000), Goicolea and Garcia Orden (2002). The 
menctioned energy-momentum formulation, was based on 
the following penalty equations: 

 
 Tα+ =qMq Φ Φ Q  (5) 

 
On the other hand, the formulation described in this 

section, is based on the equations (2), repeated here for 
clarity: 

 
 T T * *( 1) *( ), i iα α++ + = = +q qMq Φ Φ Φ λ Q λ λ Φ  (6) 

 
The key point of the conserving approach is the 

formulation of the constraint and conservative forces in such 
a way that guarantees the algorithmic conservation of the 
energy, 

 

 ( )T T *
1 2 1 2 1 2n nn n c nc nβ β

α
+ ++ + +

+ + = +q qMq Φ Φ Φ λ Q Q  (7) 

 1 1 2n n nh+ += +q q q  (8) 

 1 1 2n n nh+ += +q q q  (9) 

 *( 1) *( )
1 1 1 2

i i
n n nα+
+ + += +λ λ Φ  (10) 

 
In (7), and c ncQ Q are the contributions of the 

conservative and non-conservative forces to the generalized 
forces vector, ( ) ( ) ( )1 2 1 2n n n+ +

⎡ ⎤⋅ = ⋅ + ⋅⎣ ⎦ , and ( )n β+
⋅  denotes 

evaluation at n β+q . All the remaining terms have the same 
meaning already explained in the previous section. In (8) 
and (9), h is the time-step. 

To guarantee the conservative behavior of the constraint 
forces, the parameter [ ]0,1β ∈  has to be computed at each 
time-step, by imposing the following equality, 

 
 ( )1 1n n n n nβ+ + +− = −qΦ q q Φ Φ  (11) 

 
The form of the term cQ  depends on the particular 

expression of each conservative force, so it is case-dependent 
and will not be described here. 

The proposed algorithm given by (7), (8), (9) and (10) 
achieves exact conservation of the total energy in 
conservative systems, and exact fulfillment of the position 
constraints. 
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The formulation proposed in this section has proven to 
stabilize the behavior of the original formulation (2), but 
using a different strategy than the formulation proposed in 
Section 3: the control of the energy stored in the conservative 
forces (including the constraint forces). 

Moreover, it is possible to use the projection strategy 
described in Section 3, together with the conserving 
formulation described here, in order to enforce the constraints 
at velocity and acceleration levels. 
 

 
5. NUMERICAL SIMULATIONS 
 
5.1 Spherical compound pendulum 
 

 
Figure 1 Spherical compound pendulum. 

 
The first problem analyzed is a spherical compound 

pendulum, Goicolea and García Orden (2002), (see Figure 1). 
The system is composed of two particles with masses 

1 2 1 kgm m= = , placed respectively in the center and end of a 
massless rod of total length 1 2l l+  with 1 2 1 m.l l= =  The 
pendulum is released from the position 1 20,  2ϕ ϕ π= = , 
with initial velocities 1 20.5,  0.ϕ ϕ= = The system is 
modeled in natural coordinates. 

 
 

5.1.1 Stability problems of the index-3 
augmented Lagrangian with standard 
integrators. 

The simulation is carried out for 5 s., based on the 
formulation (2), and integrated with the trapezoidal rule and 
a time-step of 25 ms. The penalty factor chosen is 107. 

Figures 2 and 3 show the time history of the norm of the 
constraints at velocity level, Φ , and the total energy 
respectively. The drift-off effect of the velocity constraints 
can be appreciated in Figure 2. In Figure 3, it is observed that 

the total energy of the system is significantly affected, and 
grows in an uncontrolled manner. 
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Figure 3 Total energy behavior. 

 
 

5.1.2. Stabilized formulations: coordinate 
projection vs conserving formulation 

The formulations of Sections 3 and 4 are analyzed here. 
Those formulations were designed to overcome the problems 
shown by the augmented Lagrangian formulation, explained 
in the section 5.1.1. 

Figures 4 and 5 show, as expected, that the scheme with 
coordinate projections fulfills better the constraints at 
velocity and acceleration levels. Figure 6 shows that the 
conserving scheme achieves the exact conservation of the 
total energy. 
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Figure 4 Constraints derivative behavior. 
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Figure 5 Constraints second derivative behavior. 
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Figure 6 Total energy behavior. 

 

The important point is that both schemes provide an 
adequate stabilization of the equations (2). 

 
 

5.2 The Iltis vehicle 
As a good complex and realistic example to test methods 

for demanding real-time multibody applications, the full 
model of the Iltis vehicle (Iltis (1990)), illustrated in Figure 7, 
and used as a benchmark problem to check multibody 
dynamic codes, has been chosen. The simulation which has 
served to compare the different methods, consists of 8 s. of 
motion with the vehicle going up an inclined ramp and then 
down a series of stairs, starting at a horizontal speed of 5 m/s 
(the road profile is shown in Figure 8). A rather violent 
motion is undergone by the vehicle, reaching acceleration 
peaks of up to 5g. 

 

Figure 7 The Iltis vehicle. 

 
Figure 8 The road profile 

 

 
5.2.1. Coordinate projections vs conserving 
formulation 

Several analyses were performed with the formulations of 
Sections 3 and 4, using different time-steps. Figure 9 shows 
the response of both formulations with a time-step of 10 ms. 

The augmented Lagrangian formulation with projections 
(Section 3), used with a standard integrator, the trapezoidal 
rule, and is capable of solving this violent maneuver 
providing a good solution (Figure 9). 

On the other hand, the conserving formulation (Section 4) 
fails to solve the same maneuver with any time-step. The 
method is not stable enough to achieve convergence when the 
maneuver becomes violent, and it cannot pass through the 
first impact of the front wheels with the stairs, so that it only 
provides a solution for the first 4 s. of the simulation (Figure 
9). 
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Figure 9 Projections and trapezoidal rule vs. conserving 0.01 s.h =  

 
 

5.2.2. Combination of both stalibizing 
strategies 

It was noted in Section 5.2.1. that the conserving 
formulation cannot integrate the motion of the Iltis vehicle 
with the road profile shown in Figure 8. 

Moreover, it was pointed out in Section 4, that the 
projection strategy is compatible with the conserving 
formulation. The resulting scheme brings together two 
different ways of stabilizing the augmented Lagrangian 
equations (2): keeping the energy of the system bounded, 
and keeping the solution onto the constraints manifold. 
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Figure 9 Projections and trapezoidal rule vs. projections and 

conservative 0.01 s.h =  
 
With this combined scheme of conserving formulation 

and projections, it is possible to solve the motion of the Iltis 
vehicle with a higher precision than that given by the 
trapezoidal rule with projections, for the same time-step. 

Figure 10 shows that the trapezoidal rule prolongs the 
period of the solution in comparison whit the conserving 
formulation. This effect is even more apparent with bigger 
time-steps. This circumstance make possible to get 
acceptable solutions for higher time-steps, if the conserving 
augmented Lagrangian scheme with projections is used. 

 
 

6. CONCLUSIONS 
Two different methods to integrate the equations of 

constrained multibody systems have been described, both of 
them based on an augmented Lagrangian formulation. 

The formulations described, use two different strategies to 
stabilize the numerical behavior: one strategy is based on the 
projection of velocities and accelerations onto the constraints 
manifolds, and the other one on a specialized integrator 
which exactly conserves the energy for conservative systems. 

The conserving formulation shows a very good behavior, 
especially in long term simulations of conservative systems, 
for which the conservation is very important. 

The trapezoidal rule with projections shows a very robust 
behavior along with an acceptable precision. The formulation 
is not as adequate as the previous one for long term 
simulations of conservative systems, but it is a good 
candidate for demanding real-time simulations, due to its 
high robustness.  

The combination of the conserving scheme with the 
coordinate projection technique results in an algorithm which 
brings together the advantages of both strategies, and it can 
be a good candidate for real-time simulations.  
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