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ABSTRACT

Index-3 differential algebraic equations, such as
those governing multibody system dynamics, often
pose severe numerical difficulties for small time step
sizes. These difficulties can be traced back to the
effects of finite precision arithmetics. In this work
a solution to this problem is found as a simple pre-
conditioning for the governing equations that elim-
inates the amplification of errors and the ill condi-
tioning altogether. We develop a theoretical analy-
sis, in particular for the case of the Newmark family
of schemes, and show numerical experiments that
confirm the predicted behavior.

1 INTRODUCTION

Finite precision arithmetics and non-null conver-
gence tolerances are at the root of well known nu-
merical difficulties in the solution of high index dif-
ferential algebraic equations (DAEs). Errors and
perturbations pollute the numerical solution, re-
sulting in disastrous effects for small values of the
time step size. In fact, state variables and Lagrange
multipliers are affected by increasing errors as the
time step size decreases. Similarly the system Ja-
cobian matrix becomes severely ill conditioned.

Typically, proposed remedies in the multibody
dynamics literature rely on the reduction of the in-
dex from 3 to 2 or even 1. When this is done with-
out appending additional constraints and multipli-

ers, the well known drift of constraint violations is
experienced. On the other hand, other approaches
such as the GGL method (Gear et al. (1985)) or the
more recent Embedded Projection Method (Borri
et al. (2006)), avoid the drift effect by introduc-
ing additional constraints and multipliers, yielding
higher computational costs.

Here we propose a different approach consisting
in a preconditioning of the standard index-3 gov-
erning equations. A proper scaling of equations
and unknowns is found that completely eliminates
the pollution problem, achieving perfect indepen-
dence on the time step size, as observed in the case
of ordinary differential equations.

The recipe for the preconditioning is determined
on the basis of a theoretical analysis of the pertur-
bation problem in which we model the effects of
finite precision arithmetics.

We consider the case of the Newmark fam-
ily of integration schemes, as representative of a
larger class of commonly used time integrators
(e.g. modified-α (HHT), generalized-α, etc.). Bot-
tasso et al. (2006) reports in greater detail the
proposed formulation, while Bottasso, Bauchau
(2005a, 2006) consider the case of BDF methods.
Finally, we show some numerical results obtained
for a representative multibody problem that con-
firm the predicted analysis.
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2 ASYMPTOTIC ANALYSIS FOR A
LINEARIZED DYNAMIC PROBLEM

Any implicit method for the numerical integration
of the equations governing the dynamics of a non-
linear system leads to the iterative solution of a
linearized problem

J q = −b, (1)

in the time step (tn, tn+1), with time step size
h := tn+1 − tn. In the preceding equation, q repre-
sents the vector of increments for the unknowns in
the time step, b represents the residual vector, and
J is the Jacobian matrix of the problem, i.e. the
tangent matrix of the residual vector with respect
to the unknowns. Clearly, b, J and q all depend
on the time step size h.

In the following, we propose a simple approach
to account for the effects of finite precision arith-
metics. To this end, we introduce the dependence
of all terms appearing in Eq. (1) on a small param-
eter ε. Expanding in Taylor series about ε = 0, we
have

b(h, ε) = b(h, 0) + ε
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Assuming infinite precision arithmetics, i.e. for ε =
0, one has at convergence of the Newton process
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Neglecting higher order terms, we get
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h→0

q(h, ε) = − lim
h→0

J−1(h, 0) lim
h→0

b(h, ε). (5)

Taking norms, we find

∣

∣

∣

∣

lim
h→0

qi(h, ε)

∣

∣

∣

∣

≤
∑

j

∣

∣

∣

∣

lim
h→0

J−1
ij (h, 0)

∣

∣

∣

∣

∣

∣

∣

∣

lim
h→0

bj(h, ε)

∣

∣

∣

∣

,

(6a)

≤

∥

∥

∥

∥

lim
h→0

J−1(h, 0)

∥

∥

∥

∥

∞

∥

∥

∥

∥

lim
h→0

b(h, ε)

∥

∥

∥

∥

∞

.

(6b)

Equation (6b) should be interpreted on a block by
block basis for problems characterized by different
sets of equations (e.g., dynamic equilibrium, kine-
matic, etc.) and different sets of unknowns (e.g.,
displacements, velocities, etc.).

From the analysis carried out above, it appears
that a perturbation in the evaluation of the residual
b(h, ε), which will differ from zero at convergence
because of finite precision operations or because the
Newton correction has been arrested to a certain
given tolerance, will induce a perturbation in the
Newton corrections q(h, ε), which, therefore, will
also not be zero at convergence. Such perturba-
tion can be further amplified by the exact inverse
of the Jacobian J−1(h, 0). When the inverse Ja-
cobian matrix and/or the residual become large as
h goes to zero, i.e. when these functions depend
on negative powers of h, large perturbations in the
Newton corrections are observed.

From Eq. (6a) we infer that a solution to this
problem can be worked out by appropriate precon-
ditioning of the residual vector and Jacobian ma-
trix, i.e. by considering a scaled problem

J̄ q̄ = −b̄, (7)

where

J̄ := DLJ DR, q̄ := D−1
R q, b̄ := DLb,

(8)
represent the preconditioned Jacobian matrix, pre-
conditioned solution vector and preconditioned
residual vector, respectively. Matrices DL and DR

are the left and right preconditioner, which scale
the equations and the unknowns, respectively. This
way, by suitably modifying the dependence of these
terms on h, asymptotic independence on the time
step size of the Newton corrections can be achieved.
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3 NEWMARK’S METHOD FOR
MULTIBODY SYSTEMS

The equations governing the dynamics of a n degree
of freedom multibody system with m holonomic
constraints are given by

M v′ = f(u,v, t) + G(u, t)λ, (9a)

u′ = v, (9b)

0 = Φ(u, t), (9c)

where u represents the n dimensional vector of gen-
eralized displacements, v the n dimensional vector
of generalized velocities, λ the m dimensional vec-
tor of Lagrange multipliers that enforce the con-
straint conditions, f the n dimensional vector of
internal and external forces, Φ the m dimensional
vector of constraints, G := Φ,T

u
the transpose of the

constraint Jacobian, M the n × n generalized iner-
tia matrix, which can be assumed constant with-
out loss of generality. A prime is used to indicate
a derivative with respect to time t.

Equations (9) represent an index-3 differential al-
gebraic system in the state (differential) variables
(u,v) and the multiplier (algebraic) variables λ.

The following discrete equations result from the
application of the Newmark’s family of schemes to
problem (9) on a time step defined between time tn
and time tn+1 = tn + h:

M an+1 = fn+1 + Gn+1λn+1, (10a)

vn+1 = vn + h
(

(1 − γ)an + γ an+1

)

, (10b)

un+1 = un + h vn (10c)

+
h2

2

(

(1 − 2β)an + 2β an+1

)

, (10d)

0 = Φn+1. (10e)

In the preceding equations,

fn+1 := f(un+1,vn+1, tn+1), (11a)

Gn+1 := G(un+1, tn+1), (11b)

Φn+1 := Φ(un+1, tn+1), (11c)

while β and γ represent scalar parameters which
define the accuracy and (linear) stability proper-
ties of the scheme (see Newmark (1959); Geradin,
Cardona (2001) for a detailed discussion).

Equation (10a) represents the discrete dynamic
equilibrium equation, Eqs. (10b,10d) define the up-
dates for the (u,v) variables, and finally Eq. (10e)
exactly enforces the constraint at the end of the
time step.

4 DISPLACEMENT/MULTIPLIER IM-
PLEMENTATION

A common implementation of the preceding scheme
is the two-field form in terms of (u,λ). All other
possible forms of the scheme are discussed in Bot-
tasso et al. (2006). In order to obtain the solving
equations for this specific implementation, we elim-
inate an+1 and vn+1 using the updates (10b,10d),
to obtain

1

β h2
M un+1 − fn+1 − Gn+1λn+1 − jn = 0,

(12a)

Φn+1 = 0,
(12b)

where

jn := M

(

1

β h2
un +

1

β h
vn +

(
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1

2β

)

an

)

.

(13)
The linearization of Eqs. (12) leads to problem (1),
with

q :=

[

∆un+1

∆λn+1

]

, (14a)

b :=

[

bD

bC

]

, (14b)

J =





1

β h2
T −G

GT 0



 , (14c)

where the residual row blocks corresponding to the
dynamic equilibrium (subscript D) and constraint
equations (subscript C) are, respectively, given by

bD :=
1

β h2
M un+1 − fn+1 − Gn+1λn+1 − jn,

(15a)

bC := Φn+1. (15b)

The inverse Jacobian matrix can be computed as

J−1 =





β h2W T−1G R−1

−R−1 GT T−1 1

β h2
R−1



 . (16)

At this point, we are in position to estimate the
sensitivity to numerical perturbations of the (u,λ)
form of Newmark’s method based on the analysis
of Section 2. In particular, we have

lim
h→0

J =

[

O(h−2) O(h0)
O(h0) 0

]

, (17)
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and

lim
h→0

J−1 =

[

O(h2) O(h0)
O(h0) O(h−2)

]

. (18)

Therefore, the condition number of the Jacobian
matrix has the following asymptotic behavior

lim
h→0

C = O(h−4). (19)

Furthermore, inspecting b, we obtain

lim
h→0

bD = O(h−2), (20a)

lim
h→0

bC = O(h0), (20b)

and therefore, from Eq. (6b), we find
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As apparent, while the displacement increments
are not affected, both the condition number and,
more importantly, the multiplier increments show
a very unfavorable dependence on time step size,
originating the well known numerical difficulties.

5 OPTIMAL PRECONDITIONING
Two simple recipes are now proposed to solve
the problem of sensitivity to perturbations in the
present framework. Consider first the following
right preconditioner:

DR =





I 0

0
1

β h2
I



 , (22)

together with a trivial left preconditioner, i.e.
DL = I. As a result, we get

lim
h→0

J̄−1 =

[

O(h0) O(h0)
O(h0) O(h0)

]

, (23)

yielding perfect time-step-size independence of per-
turbations in both the differential and algebraic
variables:
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Considering now the right scaling (22) together
with the following left scaling

DL =

[

β h2I 0
0 I

]

, (25)

we achieve also time-step-size independence for the
condition number

lim
h→0

C = O(h0). (26)

Bottasso et al. (2006) report the optimal scalings
for all other possible forms of Newmark’s scheme.
From the analysis of those results, it appears that
the recipe for curing the numerical difficulties aris-
ing from finite precision arithmetics in DAEs can
be split into two separate actions:

• a right preconditioning (i.e. a scaling of the
unknowns) which cures the sensitivity to per-
turbations of the solution, and

• a left preconditioning (i.e. a scaling of the
equations) which, on top of the former, cures
the conditioning of the Jacobian matrix.

As a matter of fact, the right preconditioner
works by scaling the unknowns in such a way that,
with respect to the time variable, they are all of the
same ‘order’. Roughly speaking, generalized accel-
erations and Lagrange multipliers are ‘integrated
twice’ by multiplication for h2, generalized veloci-
ties are ‘integrated once’ by multiplication for h1,
while generalized coordinates are left unchanged.
This appears to be a general rule, and is the same
result obtained for a BDF integrator in Bottasso,
Bauchau (2005a, 2006).

For the left preconditioning, it appears that the
recipe is again one of simple multiplication by posi-
tive powers of the time step size. In particular, the
discretized dynamic equilibrium equation must be
‘integrated twice’ by multiplication for h2, in order
to reach the same ‘order’ with respect to the time
variable of the kinematic and constraint equations.

6 NUMERICAL EXAMPLES
In order to illustrate the predictions of the above
analysis, we consider Andrews’ squeezing mecha-
nism, a planar holonomic multibody system de-
picted in Figure 1, and consisting of seven rigid
bodies connected via revolute joints, loaded by
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a spring at point D and actuated by a constant
torque driver at point O. The model is described
in detail in Schielen (1990). The problem is here
formulated in terms of the 2-D cartesian coordi-
nates of the points E through H of the figure, along
with the Lagrange multipliers which enforce the
constant distance constraints between the points.
We used the time-step sizes h = {1·10−3, 1·10−4, 1·
10−5, 1 · 10−6, 1 · 10−7}, for a duration of the sim-
ulation of 0.02 seconds. The problem was solved
using the trapezoidal rule (i.e. Newmark’s method
with β = 1/4, γ = 1/2) with the two-field (u,λ)
approach.
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Figure 1: Andrews’ squeezing mechanism.

At each time step, the non-linear discretized
equations are iteratively solved by using Newton
method. At the j-th iteration, one computes the
current corrections from the linear system

J jqj = −bj . (27)

The norm of the corrections qj decreases at each
iteration up to a certain saturation value. In fact,
recall that, due to accumulation of roundoff errors,
we have

lim
h→0

q(h, ε) 6= 0. (28)

If further iterations are carried out, the norm of the
corrections oscillates around its saturation value,

and asymptotic convergence is lost. To take into ac-
count this effect arising from finite precision arith-
metics, we arrested the iterations when the Newton
corrections stop decreasing, i.e. when the condition

‖qj+1‖ ≥ ‖qj‖ (29)

is detected. The last decreasing Newton correction
norm indicates the tightest achievable convergence
of the Newton iteration process, which can not be
further improved no matter how many additional
iterations are carried out.
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Figure 2: Last decreasing Newton correction norms
of the coordinates vs. the time step size with the
(u,λ) approach.

Figures 2, 3 and 4 show, respectively, the co-
ordinate correction norm, the Lagrange multipliers
correction norm, and the condition number as func-
tions of the time step. The results exactly agree
with the ones predicted by the analysis.

7 CONCLUDING REMARKS

In this work we have presented an analysis of
the sensitivity to perturbations arising from fi-
nite precision arithmetics in the solution of index-3
differential-algebraic problems. The effects of finite
precision arithmetics are modeled by using a small
number, and an asymptotic analysis is carried out.
Estimates for the perturbations in the unknowns
are obtained by determining the dependence on the
time step size of the residual vector and of the Ja-
cobian matrix of the linearized problem.
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Figure 3: Last decreasing Newton correction norms
of the Lagrange multiplier vs. the time step size
with the (u,λ) approach.
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Figure 4: Condition number for the Jacobian ma-
trix at convergence vs. the time step size with the
(u,λ) approach.

Based on this result, preconditioners are readily
identified which cure the pollution problem at its
root. We analyzed the Newmark family of integra-
tors, as a representative example of second order in-
tegrators for finite-element multibody system anal-
ysis. Numerical examples were used to confirm the
analysis and illustrate the beneficial effects of the
preconditioning strategy. The proposed methodol-
ogy has the potential merit, with respect to other
possible approaches, of being trivial to implement

in an existing code. In fact it does not require any
re-writing of the governing equations and/or the
introduction of additional unknowns as commonly
done with index-reduction approaches.
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