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ABSTRACT 
The simulation of flexible multibody systems is a very 

demanding task that needs improvements in efficiency in 
order to achieve real-time performance. One of such 
improvements may be the use of topological formulations, 
which have provided good results in the simulation of large 
rigid multibody systems. In this work, a topological 
formulation for rigid bodies is extended to the flexible case, 
and tests are carried out in order to compare its performance 
with that of a global formulation. Two systems are simulated, 
a double four-bar mechanism and a vehicle suspension. As it 
happened in the rigid case for these two examples, the 
topological formulation shows lower performance than its 
global counterpart for such small systems, but the difference 
decreases as more bodies are modeled as flexible. Since in 
the rigid case the topological formulation became faster for 
large systems, further tests must be performed in order to 
check whether this advantage is kept or even increased in the 
flexible case.  

 
 

1. INTRODUCTION 
During the last years, several efficient methods for the 

real-time simulation of rigid multibody systems have been 
developed. The performance enhancement experienced by 
computers makes the inclusion of new features possible, like 
flexibility and contact. But all these new features have a 
negative effect on efficiency, making the achievement of 
real-time simulation more difficult, so that new efforts must 
be carried out regarding the dynamic formulations, in order 
to perform more realistic, real-time simulations. 

Most real-time methods for the dynamics of rigid 
multibody systems take advantage of the mechanism 
topology and, therefore, are called topological (they use 

relative coordinates). Although more difficult to implement 
than global methods (those using Cartesian or fully Cartesian 
coordinates), they have proven to be more efficient for large 
systems (Cuadrado et al. (2004)). 

The purpose of this work is to extend a topological 
formulation for rigid bodies to the flexible case, and to 
compare its behavior with that of a global formulation, as it 
has been previously done for rigid multibody systems. 

 
 

2. GLOBAL AND TOPOLOGICAL METHODS 
Two methods, one global and another topological, are 

considered in this work. The global method is a floating 
frame of reference (FFR) formulation (Shabana (1998)) 
based on natural coordinates, as described in Cuadrado et al. 
(2001). The new topological method combines the approach 
used to address flexibility by the global one, with a rigid 
body topological semi-recursive formulation which has 
showed excellent results for large rigid multibody systems 
(Cuadrado et al. (2004)). 

The global FFR formulation is based on natural 
coordinates. Each flexible body has a local frame of 
reference attached to it, which is defined by a point at the 
origin and three orthogonal unit vectors along the axes. This 
frame experiences the large amplitude motion, and 
deformations are added on local coordinates, by using 
component mode synthesis to reduce the model size. 

In the rigid case, the topological method, semi-recursive, 
opens the closed loops to get the associated open loop 
mechanism, and defines such system with relative 
coordinates. In order to obtain the dynamic equations, an 
intermediate set of global Cartesian coordinates is defined at 
body level (three translations plus three rotations), and then a 
velocity transformation is carried out to project the equations 
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into the relative coordinates. This projection is recursively 
performed by accumulation of forces and inertias, taking 
advantage of the mechanism topology. Then, closed loop 
conditions must be imposed through the corresponding 
constraints, implemented in natural global coordinates. 

In both methods, the equations of motion, stated through 
an index-3 augmented Lagrangian formulation, are combined 
with the integrator (trapezoidal rule), to produce a nonlinear 
algebraic system of equations with the dependent positions as 
unknowns (Cuadrado et al. (1997)), solved by Newton-
Raphson iteration. Once convergence is attained into the 
time-step at position level, velocities and accelerations are 
projected for them to satisfy the first and second derivatives 
of the constraints.  

 
 

3. THE PROPOSED FORMULATION 
The equations of motion, according to an index-3 

augmented Lagrangian formulation in relative dependent 
coordinates, are stated in the form, 

 
 *T Tα+ + =z zMz Φ Φ Φ λ Q  (1) 
 

where z is the relative coordinates vector, M is the mass 
matrix, Φ is the closed loop constraints vector, Φz is its 
Jacobian matrix, Q is the vector of elastic, applied and 
velocity-dependent forces, and λ∗ is the Lagrange multipliers 
vector, obtained from an iteration process carried out within 
each time-step, 

 
 * *

1 1 0,1, 2,...i i i iα+ += + =λ λ Φ  (2) 
 

which starts with *
0λ  equal to the value of *λ obtained in 

the previous time-step. 
 
 

3.1 Flexible Body Modeling 
The position of an arbitrary point r of a deformed body is 

defined as follows, 
 
 ( )0 0 u f= + = + +r r Ar r A r q  (3) 
 

where r0 stands for the position of the origin of the local 
frame of reference, A is a rotation matrix defined by the three 
orthogonal unit vectors of the reference frame [u|v|w], ur  is 
the undeformed position of the point in local coordinates, and 

fq  is its local elastic displacement. 
The elastic deformation is obtained by means of a finite 

element model of the body, which generally contains a large 
number of degrees of freedom (DOFs), so that a model 
reduction must be carried out to reduce computation times. In 
the proposed method, a Craig-Bampton reduction (Craig and 
Bampton (1968)) is used, since it allows for an easy coupling 

between bodies, and is particularly well suited for a 
topological implementation, as will be seen later. This 
reduction method approximates the elastic displacement field 
by a linear combination of static and dynamic modes, which 
can be pre-computed using any finite element code. 

Following the natural coordinates formalism, the body is 
connected to the rest of the mechanism by means of 
boundary points and unit vectors. Boundary points and 
vectors are associated to finite element displacement and 
rotation DOFs respectively, so that each static mode is 
obtained as the displacement field resulting from applying a 
unit variation to one of these boundary DOFs while keeping 
the remaining fixed. Dynamic modes are normal eigenmodes 
calculated with a fixed interface configuration. All static and 
dynamic modes are calculated with the body clamped at the 
local frame of reference. 

At this point, the topological implementation shows some 
particular characteristics. In the global formulation, the frame 
of reference terms r0 and u, v, w, are problem variables, 
while in the topological one they are calculated when the 
kinematic problem is recursively solved for the open loop 
system, at each time-step, to obtain the joint positions. This 
avoids the need for additional constraints to ensure that the 
three vectors are orthonormal. Moreover, compatibility 
constraints are no longer needed to link the static modal 
amplitudes to the boundary points and unit vectors, since 
they are directly obtained while solving the kinematics. 

Using this reduction, the local elastic displacement that 
appears in Eq. (3) can be expressed as a linear combination 
of deformation modes, 

 
 

 
ns nd

f i i j j
i j

η ξ= +∑ ∑q Φ Ψ  (4) 
 
 
where Φi and Ψj are the static and dynamic modes, and ηi and 
ξj are their respective modal amplitudes, which are added as 
new coordinates of the multibody system. This expression 
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Figure 1 General flexible body.
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can be written in matrix form, 
 

 
 
 
 [ ]

1

1 1
1

ns
f ns nd

nd

η

η
ξ

ξ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

q Φ Φ Ψ Ψ Xy  (5) 
 
 
 
 

being X a matrix formed by the modes as columns, and y a 
vector containing all the modal amplitudes of the body. 

 
 

3.2 Positions and velocities 
Topological methods cut the closed loops to establish 

recursive relationships. These loops are then closed by the 
corresponding kinematic constraints. To calculate the body 
dynamic terms, an intermediate global Cartesian coordinate 
vector Z is defined at velocity level for each body, 

 
 

 ⎧ ⎫
= ⎨ ⎬

⎩ ⎭

s
Z

ω
 (6) 

 
 
In this vector, s  is the velocity of the point of the body 
which instantly coincides with the origin of the global frame 
of reference, considering the point as rigidly attached to the 
body local frame (Bae and Haug (1987)), and ω is the 
angular velocity vector of the local frame of reference. These 
coordinates are related to the rigid body motion, and the 
global velocity vector for a flexible body, after the addition of 
the modal amplitudes, is, 

 
 
 

⎧ ⎫
⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪

⎩ ⎭

s
Z

q ω
y

y
 (7) 

 
 
The rigid body velocity vector Zi of an element i can be 

obtained for an open loop mechanism by means of a 
recursive relationship (Funes et al. (2004)), 

 
 1 1, 1, , ,i i i i i i i i i i i i− − −= + + −Z Z b z φ η φ η  (8) 
 

To illustrate this expression, Fig. 2 shows a planar revolute 
joint between two deformed bodies i-1 and i. Zi-1 is the 
absolute velocity of the preceding body frame in the 
kinematic chain. The zi vector contains all the relative 
coordinates defined at joint i, so that each bi matrix column is 
the relative velocity that arises when giving a unit velocity to 
the corresponding relative coordinate. In the example, zi is 
the relative angle at the joint. Vectors 1,i i−η  and ,i iη  are the 
amplitudes of the static modes defined at joint i for bodies i-1 

and i respectively (i.e. the local elastic displacement vectors 
of the boundary point), so that the φ terms have an analogous 
meaning to the b ones due to how the static modes are 
defined. The b and φ terms depend on the joint and mode 
type (translational or rotational) respectively, and are 
functions of the positions. In the particular case of a body 
whose frame of reference is placed at its entry point, the last 
term in Eq. (8) doesn’t appear, since the body is clamped at 
its local frame origin. 

Accelerations can be calculated by time differentiation of 
Eq. (8), 

 
 
 1 1, 1, , ,

1, 1, , ,

i i i i i i i i i i i i

i i i i i i i i i

− − −

− −

= + + −
+ + −

Z Z b z φ η φ η
d φ η φ η

 (9) 
 
 

where di stands for i ib z . 
Equations (8) and (9) yield the velocities and 

accelerations of the local frames of reference. Differentiation 
of Eq. (3) particularized to a finite element node n yields its 
velocity *

nv  as a function of its absolute position *
nr  and the 

body coordinates q, 
 
 ( )* * *

n n n= + × +v s ω r A X y  (10) 
 

where *
nX  is the submatrix formed by the three rows of X 

corresponding to the elastic displacements of node n. This 
expression can be written in matrix form to include the 
velocities of all the nn nodes, 

 
 
 
 

* * *
1 3 1 1
* * *

* 2 3 2 2

* * *
3nn nn nn

⎧ ⎫ ⎡ ⎤−
⎧ ⎫⎪ ⎪ ⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎪ ⎪ −⎢ ⎥⎩ ⎭ ⎣ ⎦

v I r AX
s

v I r AX
v ω Bq

y
v I r AX

 (11) 
 
 
 

where the tilde denotes the skew-symmetric matrix 
associated to the corresponding vector. The velocities of all 
the nodes, required for the calculation of the inertia terms, are 
therefore expressed as a function of the body coordinates q. 

 
 

1,i i−η
,i iη

i-1

i

Figure 2 Recursive kinematics in a planar revolute joint.
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3.3 Dynamic Terms in Cartesian Coordinates 
The kinetic energy of a body can be expressed as, 
 
 1

2
T

V
T dm= ∫ r r  (12) 

 
 

where V is the volume of the deformed body. For the 
calculation of this integral, the co-rotational approximation 
proposed by Geradin and Cardona (2001) is used. This 
approximation, which leads to a simplified mass matrix at the 
cost of introducing a kinematic inconsistency, assumes that 
the finite element interpolation functions N, intended for the 
interpolation of elastic displacements, can be used as well for 
the interpolation of velocities. In that case, the kinetic energy 
can be approximated in terms of the finite element mass 
matrix MFEM and the nodal velocities v*, 

 
 
 * * * *1 1

2 2
T T T

FEMV
T dm= =∫ v N Nv v M v  (13) 

 
 

These nodal velocities can be calculated by using the B 
matrix defined in Eq. (11), so that the mass matrix M  of an 
elastic body in body coordinates is obtained as, 

 
 1

2
T T T

FEM FEMT = ⇒ =q B M Bq M B M B  (14) 
 

This is a very simple expression for the mass matrix, taking 
into account that the finite element mass matrix is directly 
obtained from a standard finite element code and is constant. 
Application of the Lagrange equations to this expression of 
the kinetic energy leads to the velocity dependent inertia 
forces, 

 
 T

v FEM= −Q B M Bq  (15) 
 
The elastic potential of a deformed body is obtained from 

the finite element stiffness matrix KFEM and the nodal elastic 
displacements, 

 
 * *1

2
T

f FEM fU = q K q  (16) 
 

The elastic displacements of the nodes from Eq. (5) can be 
introduced into this equation, so that a stiffness matrix K is 
obtained in terms of the modal amplitudes, 

 
 1

2
T T T

FEM FEMU = ⇒ =y X K Xy K X K X  (17) 
 

and this constant matrix can be used for the calculation of the 
elastic forces, 

 
 e

U∂
= − = −

∂
Q Ky

q
 (18) 

 

Applied forces are introduced in body coordinates by 
means of the virtual power principle. For example, for a point 
force F applied at node ri, 

 
 
 

T
T T Ti
a i a i

∂⎛ ⎞
= ⇒ = =⎜ ⎟∂⎝ ⎠

r
Q q F r Q F B F

q
 (19) 

 
 

where Bi is the three row submatrix of B corresponding to the 
three degrees of freedom of node i. 

 
 

3.4 Equations of Motion 
In order to make the following steps clearer, the 

coordinates of the whole system will be grouped into two 
vectors, one for each coordinate set, 

 
 
 

{ }
{ }

1 1 1

1 1 1

TT T T T T T
nb nb nb

TT T T T
nc nb nbz z

=

=

q Z Z η η ξ ξ

z η η ξ ξ
 (20) 

 
 

where nb stands for the number of bodies in the system, and 
nc is the number of relative coordinates of the open loop 
version of the mechanism. The mass matrix and force vector 
in body coordinates can be assembled for the whole system, 
having separate blocks for the rigid body part, the static 
modal amplitudes, and the dynamic modal amplitudes, 

 
 
 
 

, ,

, ,

, ,

;
RB RB RB RB

RB

RB

η ξ

η η η ξ η

ξ ξ η ξ ξ

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= = ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

M M M Q
M M M M Q Q

M M M Q
 (21) 

 
 
 
The application of the virtual power principle yields, 
 
 ( )* 0T − =q Mq Q  (22) 
 

equation that must be transformed into the set of relative 
coordinates z. They are related to the body coordinates q by a 
transformation matrix R such that, 

 
 =q Rz  (23) 
 

Substitution of q and its derivatives in Eq. (22) results in the 
following expression for the equations of motion, taking into 
account that the z coordinates are independent for an open-
loop system, 

 
 ( )T T= −R MRz R Q MRz  (24) 
 

This means that the leading matrix and the right hand side of 
the equations of motion in relative coordinates are, 
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 ( );T T= = −M R MR Q R Q MRz  (25) 
 

These operations can be performed very efficiently by taking 
advantage of the open loop topology. The R matrix is the 
result of assembling in matrix form the recursive 
relationships defined in Eq. (8) for the open loop system, 
which makes its structure rather particular. Matrix R can be 
divided into blocks if the q and z coordinates are arranged as 
described in Eq. (20), 

 
 
 

0
0 0
0 0

RB η⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R R
R I

I
 (26) 

 
 

where RRB and Rη are two submatrices which relate the 
Cartesian coordinates to the relative coordinates and to the 
static modal amplitudes, respectively. The first submatrix, the 
rigid body part of R, would be the R matrix of an equivalent 
rigid mechanism in the current deformed configuration. The 
example described in Fig. 3, in which bodies 2 and 3 are 
flexible, is used to show how the R matrix terms look like, 
 
 

 
 
 
 
 

6 1

6 6 2

6 6 6 3

6 6 6 4

6 6 6 6 5

2,2
6

2,34
6 6 6

3,3
6 6

6 6

0 0 0 0 0 0 0 0
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0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0 0
0 0 0

0
0 0 0

0 0
0 0 0 0

0 0

d
RB RB RB

η
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

−⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

I b
I I b

R I I I b T R
I I I b
I I I I b

φ
I

φ
R I I I

φ
I I
I I

d
η ηT R

(27)
  

 
 
 
 
 

 
Each of these two submatrices can be considered as the 

product of a connectivity matrix T, which depends 
exclusively on the mechanism topology, and a block diagonal 
matrix Rd, containing the kinematic b or φ terms. Each block 
column of the connectivity matrices is associated to either a 
joint (RB) or a boundary generating static modes (η), and 
contains identity matrices in the rows corresponding to those 
bodies being affected by a variation of the column’s relative 
coordinates or modal amplitudes. Expanding in blocks the 
mass matrix projection of Eq. (25) (Funes et al. (2004)), 

 
 
 
 
 
 
 
 ,

,

, ,

, , , ,

, ,

0
0

0 0 0

0 0 0
0
0

0

0

T T
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T T T
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T T
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T T
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η

η η η

η η ξ

ξ η ξ

η ξ

η η η η η η ξ
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⎢ ⎥= ⎢ ⎥
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⎢ ⎥+ ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥+ +⎢ ⎥
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R M R R M R
R MR R M R R M R

M M
M M

R M R M
M R R M M R R M
M R M R

 (28) 
 
 
 
 
 
 
 

The same should be done for the force vector. All of these 
terms can be recursively calculated by accumulating the 
individual mass matrices from the leaves to the root. For 
example, the rigid body part of the mass matrix 

 
 ( )T dT T d

RB RB RB RB RB RB RB RB=R M R R T M T R  (29) 
 

For the mechanism shown in Fig. 3, 
 
 
 
 
 

1 2 3 4 5

2 3 4 5

3

4 5

5

0 0T
RB RB RB

sym

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
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M M M M M
M M M M

T M T M
M M

M

 (30) 
 
 
 
 

where the Mi sub-matrices are the following, 
 
 
 
 
 

5 5

4 4 5

3 3

2 2 3 4

1 1 2

=
= +
=
= + +
= +

M M
M M M
M M
M M M M
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All the remaining terms of the mass matrix can be 

calculated following a similar procedure, taking advantage on 
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Figure 3 Mechanism topology example.
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the connectivity matrices, and the same can be said of the 
projected force vector. 

Once the dynamic terms have been obtained in relative 
coordinates for the open loop system, the closed loop 
kinematic constraints are imposed in natural coordinates. The 
Jacobian matrix of the constraints appearing in Eq. (1) is 
evaluated by differentiating the constraints with respect to the 
relative coordinates, which can be done by means of the 
chain differentiation rule,  

 
 =z q zΦ Φ q  (32) 
 

where in this case q stands for the natural coordinates at the 
corresponding cut joint. The term qz is easily calculated since 
each column contains the velocities of the natural coordinates 
when a unit velocity is given to its corresponding relative 
coordinate z and zero to the rest. 
 
 
3.5 Time Integration 

The numerical integrator adopted is the implicit single-
step trapezoidal rule, whose difference equations are, 

 
 
 
 

1 1

1 12

2 ˆ

4 ˆ

n n n

n n n

t

t

+ +

+ +

= +
∆

= +
∆

z z z

z z z
 (33) 

 
 
 

where ∆t is the time-step and, 
 
 
 
 

2

2ˆ

4 4ˆ

n n n

n n n n

t

tt

⎛ ⎞= − +⎜ ⎟∆⎝ ⎠
⎛ ⎞= − + +⎜ ⎟∆∆⎝ ⎠

z z z

z z z z
 (34) 

 
 
 

If dynamic equilibrium is imposed at step n+1 by combining 
the integrator equations (33) with the equations of motion 
(1), a nonlinear system of algebraic equations must be solved 
for the relative coordinates in n+1, 

 
 ( )1 0n+ =f z  (35) 
 

The system can be solved using the Newton-Raphson 
iteration with the following approximated tangent matrix and 
residual vector, 
 

 
 
 

( )

( )

2

2
*

2 4

4

T

T T

t t

t

α

α

∆ ∆
≅ + + +

∆
= + + −

z z z

z z z

f M C Φ Φ K

f Mq Φ Φ Φ λ Q
 (36) 

 
 

being K and C the stiffness and damping matrices, 
 

 ;= − = −z zK Q C Q  (37) 
 

The solution of Eq. (35) yields a position vector that 
fulfills the dynamic equilibrium equations and the kinematic 
constraints at position level 0=Φ . However, the velocities 
and accelerations do not satisfy the derivatives of the 
constraints, since they have not been imposed. Therefore, the 
resulting velocities and accelerations need to be projected in 
order to enforce their fulfillment of the constraints 
derivatives. Naming *z  and *z  the velocities and 
accelerations obtained once the Newton-Raphson iteration 
has converged, the new projected velocities and accelerations 
are obtained solving the following linear systems, 

 
 
 
 

( )

2 2
*

2 2
*

2 4 4

2 4 4

T
t

T
t

t t t

t t t

α

α

⎡ ⎤∆ ∆ ∆
= + + −⎢ ⎥

⎣ ⎦
⎡ ⎤∆ ∆ ∆

= + + − +⎢ ⎥
⎣ ⎦

z z

z z z

f z M C K z Φ Φ

f z M C K z Φ Φ z Φ
(38) 

 
 
 
 

4 TEST EXAMPLES 
Two examples, already used for a global vs topological 

comparison in rigid multibody systems, have been 
implemented in Matlab environment through both the global 
and the topological formulation. The first one is a planar 
double four-bar mechanism, formed by five identical bars, 
and the second one is the front left suspension of the Iltis 
vehicle. Performance measurements have been carried out 
with different numbers of flexible elements, in order to 
evaluate the influence of such parameter in each formulation. 

 
 

4.1. Double Four-Bar Mechanism 
The system consists of five identical steel bars, each of 

them having unit length and mass, connected by revolute 
joints. Each bar can be considered as rigid or flexible, 
modeled in the flexible case by 10 beam elements, with one 

Figure 4 Double four-bar mechanism.
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axial static, one bending static, and two bending dynamic 
modes. The number of coordinates varies as more flexible 
bars are considered in the system, being this variation 
different in the global and topological formulations, because 
the latter doesn’t include as coordinates the unit vectors of 
the local frames. The number of coordinates for each 
formulation and number of flexible bodies is given in Table 1. 

 
 

Table 1 Number of system coordinates in the first example. 
 

# flexible bars 0 1 2 3 4 5 
Global 6 13 20 27 34 41 
Topological 5 8 11 14 17 20 

 
 

The number of coordinates tends to be double in the global 
case when more flexible bodies are considered, because each 
flexible body adds four modal amplitudes plus four unit 
vector components, while, in the topological case, each body 
adds only the four modal amplitudes. 

The system is subject to gravity acceleration, and is given 
an initial velocity of 1 rad/s in clockwise direction. Motion is 
integrated during 5 s, the time to approximately complete 2.7 
revolutions. The time-step used in all simulations is 10 ms, 
and the CPU-times required for the integration are those 
provided in Table 2. 

 
 

Table 2 CPU-times (s) in the first example. 
 

# flex. 0 1 2 3 4 5 
Global 0,91 3,30 6,24 9,61 11,51 15,22 
Topolog. 4,85 9,11 12,62 15,74 17,74 20,92 
 

As it may be seen in the table, the CPU-times reduce their 
difference when more bodies are considered flexible. In the 
rigid case, the global formulation is five times faster, while, 
in the fully flexible model, the topological formulation needs 
only 37% more time for integration, probably due to the 
proportionally lower number of coordinates mainly. 

 
 

4.2. Iltis Suspension 
The front left suspension of the Bombardier Iltis vehicle 

(Iltis Data Package (1990)) consists, as shown in Fig. 5, on a 
lower A-arm triangle connected to both the car body and the 
wheel hub. A damper connects the A-arm to the car body, and 
the upper side of the hub is connected to the chassis by 
means of a leaf spring, which is modeled as an articulated bar 
with a spring element added between the hub top and the 
chassis. In this system, three elements can be considered as 
flexible: the A-arm, the bar that models the leaf spring, and 
the steering rod. All of them have been modeled as steel 
elements, with 10 elements per bar (two bending static modes 
and four bending dynamic modes) and 21 elements in the 
case of the A-arm (one vertical static mode in the connection 
to the hub, another one in the connection to the damper, and 
the first two dynamic modes). The number of coordinates of 
all the possible combinations of formulation and number of 
flexible bodies results, 

 
 
Table 3 Number of system coordinates in the second example. 

 
# flexible elements 0 1 2 3 
Global 25 38 53 68 
Topological 8 12 18 24 
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Figure 6 Iltis suspension simulation results.

Figure 5 Iltis suspension. 
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In this case, the number of coordinates of the global model is 
around three times larger, and, unlike the previous example, 
this relation remains almost constant with the number of 
flexible bodies. 

The suspension reaches equilibrium and then runs down a 
0.2 m step at t=2 s. The integration, with a time-step of 10 ms, 
is carried out for 5 seconds until the suspension reaches 
equilibrium again. The time history of the vertical coordinate 
of the chassis as well as that of the wheel center are plotted in 
Fig. 6, showing a very good agreement between the two 
formulations (dotted line for the topological method). The 
CPU-times required to carry out the simulation are displayed 
in Table 4. 

 
 

Table 4 CPU-times (s) in the second example. 
 

# flex. 0 1 2 3 
Global 1,95 9,05 14,56 19,43 
Topolog. 8,19 20,54 29,55 38,57 

 
 

In this three-dimensional case, the performance difference is 
reduced when more flexible bodies are considered, as it 
happened in the planar case. The CPU-time ratio changes 
from a value of 4 in the rigid case, to a value of 2 when the 
three mentioned bodies are modeled as flexible.  

 
 

CONCLUSIONS 
A new topological formulation for flexible multibody 

dynamics has been presented, and its performance compared 
with that of a global formulation. The new formulation 
obtains lower performance than the global one in the two 
cases studied, but some considerations should be taken into 
account: 

1. The simulated systems were not large enough to extract 
definitive conclusions. In the rigid case, the topological 
formulation was slower in both examples, but results were 
totally different for larger systems (Cuadrado et al. (2004)). 
Moreover, the topological method tends to improve its 
relative performance as more bodies are modeled as flexible.  

2. The formulations were implemented in Matlab, where 
matrix multiplications are calculated by compiled internal 
functions and, hence, are very fast, while m-code is very 
inefficient. This motivated that calculation of the mass matrix 
and force vector of Eq. (25) by means of the accumulation 
method described in section 3.4, is slower than by direct 
multiplication. Consequently, direct multiplication was used 
in the examples, thus loosing the theoretical advantage 
provided by the recursive accumulation of masses and forces. 
Different results would be obtained if the examples were 

implemented in C++ or Fortran languages. 
3. The B matrix calculation and mass matrix projection 

take between 30% and 60% of the total integration time. The 
impact of these operations obviously grows with the number 
of flexible bodies, being higher in the global case. Either a 
further reduction procedure, or a preprocess for obtaining 
constant mass matrix terms instead of keeping the size of the 
underlying finite element model -as it happens with the B 
matrix- would also affect the results. 

Therefore, further work must be carried out in order to 
determine the efficiency of the topological formulation and to 
establish application criteria of the global and the topological 
formulations in the flexible case, as it was done for systems 
of rigid bodies. The simulation of a large system -like the full 
model of the Iltis vehicle-, implemented in either C++ or 
Fortran languages, will likely provide the information needed 
to achieve the final conclusions. 
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