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Abstract. We propose a preconditioning strategy for the governing equations of multibody sys-
tems in index-3 differential-algebraic form. The method eliminates the amplification of errors
and the ill conditioning which affect numerical solutions of high index differential algebraic
equations for small time steps. We develop a new theoreticalanalysis of the perturbation prob-
lem and we apply it to the derivation of preconditioners for the Newmark family of integration
schemes. The theoretical results are confirmed by numericalexperiments.
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1 INTRODUCTION

Errors and perturbations due to finite precision arithmetics pollute the numerical solution of
high index differential algebraic equations (DAEs). This pollution causes disastrous effects for
small values of the time step size. In fact, state variables and Lagrange multipliers are affected
by increasing errors as the time step size decreases. Similarly, the system Jacobian matrix
becomes severely ill conditioned.

Various remedies have been offered in the multibody dynamics literature to this problem.
Basically, all remedies point to the reduction of the index from 3 to 2 or 1. Examples, among
many others, are the well known GGL method [4] or the more recent Embedded Projection
Method [1]. However, these approaches require the rewriting of the governing equations. This
either increases the cost, since additional constraints and multipliers are introduced, or causes
additional problems, like the drift of constraint violations.

A radically different approach consists in the preconditioning of the index-3 governing equa-
tions. Reference [7] proposed a simple scaling transformation which led to a partial improve-
ment for both the sensitivity of the solution fields with respect to perturbations and the condi-
tioning of the Jacobian matrix. In References [2, 3] it was shown that the pollution problem can
be completely eliminated for BDF schemes by a proper scaling, achieving perfect independence
on the time step size. This is the same behavior observed in the case of ordinary differential
equations.

In this paper we offer a new theoretical analysis of the perturbation problem. Based on
the results of the analysis, we propose a preconditioning strategy for the case of the Newmark
family of integration schemes, which is representative of alarger class of commonly used time
integrators (e.g. modified-α (HHT), generalized-α, etc.) The procedure amounts to a simple
scaling of the unknowns which cures the pollution problem, and another similar scaling of the
equations which eliminates the ill conditioning of the Jacobian matrix.

The paper is organized as follows. In Section 2 we present theasymptotic analysis in a
general setting, in a way that clearly separates the effectsof time discretization and the per-
turbations which are due to finite precision arithmetics. InSection 3 we start by reviewing
the index-3 governing equations together with their time discretization according to the New-
mark family of schemes. Next, we analyze two of the various possible implementations of the
scheme, and in particular we consider the three-field (displacements, velocities and multipliers)
and the two-field (displacements and multipliers) approaches. The former, although probably
never employed in practice, is presented since it helps in the understanding of the general fea-
tures of the proposed methodology, while the latter is obtained by static condensation of the
velocities at each time step, and is substantially more efficient in terms of computational costs.
For both settings, the asymptotic analysis resulting from Section 2 is carried out. Section 4
discusses the preconditioning strategy for the three and two-field approaches. Numerical re-
sults confirming the predicted behaviors are shown in Section 5. Some concluding remarks are
finally exposed in Section 6.

2 ASYMPTOTIC ANALYSIS FOR A LINEARIZED DYNAMIC PROBLEM

Any implicit method for the numerical integration of the equations governing the dynamics
of a non-linear system leads to the iterative solution of a linearized problem

J q = −b, (1)
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in the time step(tn, tn+1), with time step sizeh := tn+1 − tn. In the preceding equation,q
represents the vector of increments for the unknowns in the time step,b represents the residual
vector, andJ is the Jacobian matrix of the problem, i.e. the tangent matrix of the residual vector
with respect to the unknowns.

It goes without saying thatb, J andq all depend on the time step sizeh. Furthermore,
to model the effects of finite precision arithmetics, we introduce the dependence of all terms
appearing in eq. 1 on a small parameterε. Expanding in Taylor series aboutε = 0, we have

b(h, ε) = b(h, 0) + ε
∂b

∂ε

∣

∣

∣

∣

(h,0)

+ O(ε2), (2a)

J(h, ε) = J(h, 0) + ε
∂J

∂ε

∣

∣

∣

∣

(h,0)

+ O(ε2), (2b)

q(h, ε) = q(h, 0) + ε
∂q

∂ε

∣

∣

∣

∣

(h,0)

+ O(ε2). (2c)

For infiniteprecision arithmetics, i.e. forε = 0, one has at convergence of the Newton process

lim
h→0

b(h, 0) = 0, lim
h→0

q(h, 0) = 0, (3)

so that

lim
h→0

b(h, ε) = ε lim
h→0

(

∂b

∂ε

)
∣

∣

∣

∣

(h,0)

+ O(ε2), (4a)

lim
h→0

q(h, ε) = ε lim
h→0

(

∂q

∂ε

)
∣

∣

∣

∣

(h,0)

+ O(ε2). (4b)

Inserting the previous expansions into eq. 1, yields

ε lim
h→0

J(h, 0) lim
h→0

(

∂q

∂ε

)
∣

∣

∣

∣

(h,0)

= −ε lim
h→0

(

∂b

∂ε

)
∣

∣

∣

∣

(h,0)

+ O(ε2). (5)

Therefore, neglecting higher order terms, we get

ε lim
h→0

(

∂q

∂ε

)
∣

∣

∣

∣

(h,0)

= −ε lim
h→0

J(h, 0)−1 lim
h→0

(

∂b

∂ε

)
∣

∣

∣

∣

(h,0)

, (6)

or, in other words,
lim
h→0

q(h, ε) = − lim
h→0

J−1(h, 0) lim
h→0

b(h, ε). (7)

Taking norms, we find
∣

∣

∣
lim
h→0

qi(h, ε)
∣

∣

∣
≤

∑

j

∣

∣

∣
lim
h→0

J−1
ij (h, 0)

∣

∣

∣

∣

∣

∣
lim
h→0

bj(h, ε)
∣

∣

∣
, (8a)

≤
∥

∥

∥
lim
h→0

J−1(h, 0)
∥

∥

∥

∞

∥

∥

∥
lim
h→0

b(h, ε)
∥

∥

∥

∞

. (8b)

Equation 8b should be interpreted on a block by block basis for problems characterized by
different sets of equations (e.g., dynamic equilibrium, kinematic, etc.) and different sets of
unknowns (e.g., displacements, velocities, etc.); this will become clearer in the next section.
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The previous result can be interpreted as follows: a perturbation in the evaluation of the
residual (the termb(h, ε), which will differ from zero at convergence because of finiteprecision
operations or because the Newton correction has been arrested to a certain given tolerance) will
induce a perturbation in the Newton corrections (the termq(h, ε), which, therefore, will also
not be zero at convergence). Such perturbation can be further amplified by the exact inverse
of the Jacobian (the termJ−1(h, 0)). When the inverse Jacobian matrix and/or the residual
become large ash goes to zero, i.e. when these functions depend on negative powers ofh, large
perturbations in the Newton corrections are observed.

Equation 8a suggests that a way of solving the problem is to look for appropriate precondi-
tioners which, by suitably modifying the dependence of the residual vector and of the Jacobian
matrix onh, will ensure the asymptotic independence on the time step size of the Newton cor-
rections. In general, the scaled system can be written

J̄ q̄ = −b̄, (9)

where
J̄ := DLJ DR, q̄ := D−1

R q, b̄ := DLb, (10)

represent the preconditioned Jacobian matrix, preconditioned solution vector and precondi-
tioned residual vector, respectively.DL is the left preconditioner, which scales the equations,
while DR is the right preconditioner, which scales the unknowns.

These ideas are made more precise in the context of the Newmark family of methods in the
following section.

3 NEWMARK’S METHOD FOR MULTIBODY SYSTEMS

3.1 Problem definition

The dynamics of an degree of freedom multibody system withm holonomic constraints is
governed by the equations

M v′ = f (u, v, t) + G(u, t) λ, (11a)

u′ = v, (11b)

0 = Φ(u, t), (11c)

where the notation(·)′ = d(·)/dt indicates a derivative with respect to timet, u represents the
n dimensional vector of generalized displacements,v then dimensional vector of generalized
velocities, andλ them dimensional vector of Lagrange multipliers that enforce the constraint
conditions. Furthermore,f is then dimensional vector of internal and external forces,Φ is the
m dimensional vector of constraints, andG := Φ,T

u
is the transpose of the constraint Jacobian.

Finally, M represents then × n generalized inertia matrix, which can be assumed constant
without loss of generality. Equations 11 amount to an index-3 differential algebraic system in
the state (differential) variables(u, v) and the multiplier (algebraic) variablesλ.

The application of the Newmark’s family of schemes to problem 11 on a time step defined
between timetn and timetn+1 = tn + h leads to the following discrete equations:

M an+1 = fn+1 + Gn+1λn+1, (12a)

vn+1 = vn + h
(

(1 − γ) an + γ an+1

)

, (12b)

un+1 = un + h vn +
h2

2

(

(1 − 2 β) an + 2 β an+1

)

, (12c)

0 = Φn+1. (12d)
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In the preceding equations,

fn+1 := f (un+1, vn+1, tn+1), (13a)

Gn+1 := G(un+1, tn+1), (13b)

Φn+1 := Φ(un+1, tn+1), (13c)

while β andγ represent scalar parameters which define the accuracy and (linear) stability prop-
erties of the scheme (see [6, 5] for a detailed discussion). Equation 12a represents the discrete
dynamic equilibrium equation, eqs. 12b,12c define the updates for the(u, v) variables, and
finally eq. 12d exactly enforces the constraint at the end of the time step.

3.2 Three-field(u, v, λ) form

We consider Newmark’s method written in three-field form, the three unknown fields being
(u, v, λ). Eliminatingan+1 in eqs. 12 we obtain

1

γ h
M (vn+1 − vn) = fn+1 + Gn+1λn+1 −

(

1 −
1

γ

)

M an, (14a)

un+1 − un = h

(

β

γ
vn+1 +

(

1 −
β

γ
vn

))

−
h2

2

(

1 −
2 β

γ

)

an, (14b)

0 = Φn+1. (14c)

Linearizing eqs. 14 leads to problem 1, where the vector of unknown incrementsq and the
residual vectorb can be partitioned by blocks as

q :=





∆un+1

∆vn+1

∆λn+1



 , b :=





bD

bK

bC



 , (15)

the subscriptD indicating the row block of the dynamic equilibrium equations 14a, the subscript
K the row block of the kinematic equations 14b, and the subscript C the row block of the
constraint equations 14c. The expressions for the residualrow blocks are found to be

bD :=
1

γ h
M (vn+1 − vn) − (fn+1 + Gn+1λn+1) +

(

1 −
1

γ

)

an, (16a)

bK := un+1 − un − h

(

β

γ
vn+1 +

(

1 −
β

γ
vn

))

+
h2

2

(

1 −
2 β

γ

)

an, (16b)

bC := Φn+1. (16c)

The Jacobian matrixJ reads

J =











X
1

γ h
U −G

I −
β h

γ
I 0

GT
0 0











, (17)

where we wroteG for Gn+1 for the sake of a lighter notation, whileI is then × n identity
matrix, and finally

X := − (f,u)
n+1 −

(

(G λ),u

)

n+1
, (18a)

Y := − (f,v)n+1 , (18b)

U := M + γ h Y . (18c)
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The inverse Jacobian matrix is readily computed as

J−1 =











β h2W W U T−1G R−1

γ h W
γ

β h
(I − W U) −

γ

β h
T−1G R−1

−R−1 GT T−1 1

β h2
R−1 GT T−1U

1

β h2
R−1











, (19)

having defined

T := M + γ h Y + β h2X, (20a)

R := GT T−1G, (20b)

S := G R−1GT , (20c)

W := T−1(I − S T−1). (20d)

3.3 Asymptotic analysis for the three-field(u, v, λ) form

An estimate of the sensitivity to numerical perturbations of the three-field form of Newmark
method can be based on the analysis of Section 2. In particular, we have

lim
h→0

J =





O(h0) O(h−1) O(h0)
O(h0) O(h1) 0
O(h0) 0 0



 , (21)

and

lim
h→0

T = O(h0), (22a)

lim
h→0

R = O(h0), (22b)

lim
h→0

S = O(h0), (22c)

lim
h→0

W = O(h0), (22d)

so that

lim
h→0

J−1 =





O(h2) O(h0) O(h0)
O(h1) O(h−1) O(h−1)
O(h0) O(h−2) O(h−2)



 . (23)

This implies that the condition numberC := ‖J‖∞‖J−1‖∞ of the Jacobian matrix has the
following asymptotic behavior

lim
h→0

C = O(h−3). (24)

Furthermore, inspectingb, we obtain

lim
h→0

∆bD = O(h0), (25a)

lim
h→0

∆bK = O(h0), (25b)

lim
h→0

∆bC = O(h0). (25c)
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Therefore, using eq. 8b and considering the block structureof the arrays, we conclude
∣

∣

∣
lim
h→0

∆un+1

∣

∣

∣
≤ O(h0), (26a)

∣

∣

∣
lim
h→0

∆vn+1

∣

∣

∣
≤ O(h−1), (26b)

∣

∣

∣
lim
h→0

∆λn+1

∣

∣

∣
≤ O(h−2). (26c)

This result explains the commonly observed ill-conditioned behavior of the velocity compo-
nents and of the Lagrange multipliers for small values of thesteph.

3.4 Two-field (u, λ) form

Consider now a two-field implementation of Newmark method, and in particular the(u, λ)
case. Given the updates 12b,12c, we eliminatean+1 andvn+1 to obtain

1

β h2
M un+1 − fn+1 − Gn+1λn+1 − jn = 0, (27a)

Φn+1 = 0, (27b)

where

jn := M

(

1

β h2
un +

1

β h
vn +

(

1 −
1

2 β

)

an

)

. (28)

The linearization of eqs. 27 leads to problem 1, with a vectorof unknown incrementsq and a
residual vectorb given by

q :=

[

∆un+1

∆λn+1

]

, b :=

[

bD

bC

]

. (29)

The residual row blocks corresponding to the dynamic equilibrium (subscriptD) and constraint
equations (subscriptC) are, respectively,

bD :=
1

β h2
M un+1 − fn+1 − Gn+1λn+1 − jn, (30a)

bC := Φn+1. (30b)

The Jacobian matrixJ reads

J =





1

β h2
T −G

GT
0



 , (31)

and the inverse Jacobian matrix can be computed as

J−1 =





β h2W T−1G R−1

−R−1 GT T−1 1

β h2
R−1



 . (32)
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3.5 Asymptotic analysis for the two-field(u, λ) form

Similarly to the three-field case, we get

lim
h→0

J =

[

O(h−2) O(h0)
O(h0) 0

]

, (33)

and

lim
h→0

J−1 =

[

O(h2) O(h0)
O(h0) O(h−2)

]

. (34)

Therefore, the condition number of the Jacobian matrix has the following asymptotic behavior

lim
h→0

C = O(h−4). (35)

Furthermore, inspectingb, we obtain

lim
h→0

∆bD = O(h−2), (36a)

lim
h→0

∆bC = O(h0), (36b)

and therefore, from eq. 8b, we find
∣

∣

∣
lim
h→0

∆un+1

∣

∣

∣
≤ O(h0), (37a)

∣

∣

∣
lim
h→0

∆λn+1

∣

∣

∣
≤ O(h−2). (37b)

3.6 Summary of results of the asymptotic analysis

Table 1 summarizes the results for the various possible forms of the Newmark family of
methods. Clearly, the asymptotic behavior of the various fields is always the same, irrespec-
tively of the choice of primary variables. In fact, the(u, v, λ), (u, λ), (v, λ) and(a, λ) forms
are obtained from the(u, v, a, λ) form (eqs. 12) by static elimination. This operation, being
performed analytically and hence exactly, can not change the dependence onh of the result.

(u, v, a, λ) (u, v, λ) (u, λ) (v, λ) (a, λ)
∆u O(h0) O(h0) O(h0) O(h0)∗ O(h0)∗
∆v O(h−1) O(h−1) O(h−1)∗ O(h−1) O(h−1)∗
∆a O(h−2) O(h−2)∗ O(h−2)∗ O(h−2)∗ O(h−2)
∆λ O(h−2) O(h−2) O(h−2) O(h−2) O(h−2)
C O(h−4) O(h−3) O(h−4) O(h−3) O(h−2)

Table 1: Summary of results for the four, three and two-field forms (the symbol∗ denotes a secondary unknown
recovered from a primary one.)

On the other hand, the implementation affects the conditionnumberC, as shown in the last
row of the same table. Notice however that the effects of perturbations on the solution isnot
measured by the condition numberC, but by the asymptotic analysis of Section 2. The only
effect ofC would be felt when using an iterative solver, whose convergence rate is affected by
the conditioning of the matrix. The use of iterative solversis however quite rare in the context
of multibody dynamics problems.
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4 OPTIMAL PRECONDITIONING

4.1 Preconditioning for the three-field(u, v, λ) form

Consider the following right preconditioner for the three-field (u, v, λ) form of Newmark’s
method

DR =











I 0 0

0
γ

β h
I 0

0 0
1

β h2
I











. (38)

This scaling of the unknowns, together withDL = I, i.e. no scaling of the equations, com-
pletely solves the problem of sensitivity to perturbations. In fact, considering the preconditioned
problem 9 and the expressions 16 and 19 for the residuals and the inverse Jacobian, we find:

lim
h→0

J̄−1 =





O(h0) O(h0) O(h0)
O(h0) O(h0) O(h0)
O(h0) O(h0) O(h0)



 , (39)

so that
∣

∣

∣
lim
h→0

∆ūn+1

∣

∣

∣
≤ O(h0), (40a)

∣

∣

∣
lim
h→0

∆v̄n+1

∣

∣

∣
≤ O(h0), (40b)

∣

∣

∣
lim
h→0

∆λ̄n+1

∣

∣

∣
≤ O(h0). (40c)

This way perfect time-step-size independence of perturbations in all the differential and alge-
braic variables is achieved, as in the case of well behaved ordinary differential equations.

Consider now the right scaling 38 together with the following left scaling

DL =





β h2I 0 0

0 I 0

0 0 I



 . (41)

The combination of the two cures the condition number, and infact in this case we have

lim
h→0

C = O(h0). (42)

4.2 Preconditioning of the two-field(u, λ) form

Consider the following right preconditioner:

DR =





I 0

0
1

β h2
I



 . (43)

This scaling, together withDL = I, yields to

lim
h→0

J̄−1 =

[

O(h0) O(h0)
O(h0) O(h0)

]

, (44)

9
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so that we have again perfect time-step-size independence of perturbations in the differential
and algebraic variables:

∣

∣

∣
lim
h→0

∆ūn+1

∣

∣

∣
≤ O(h0), (45a)

∣

∣

∣
lim
h→0

∆λ̄n+1

∣

∣

∣
≤ O(h0). (45b)

Considering now the right scaling 43 together with the following left scaling

DL =

[

β h2I 0

0 I

]

, (46)

we have time-step-size independence for the condition number

lim
h→0

C = O(h0). (47)

4.3 Some remarks on preconditioning

It appears that the recipe for curing the numerical difficulties arising from finite precision
arithmetics in DAEs can be split into two separate actions:

• a right preconditioning (i.e. a scaling of the unknowns) which cures the sensitivity to
perturbations of the solution, and

• a left preconditioning (i.e. a scaling of the equations) which, on top of the former, cures
the conditioning of the Jacobian matrix.

As discussed earlier, we stress that the former of these two actions is the one that really matters
in the general case, while the latter is relevant only when employing an iterative solver for the
solution of problem 1.

As a matter of fact, the right preconditioner works by scaling the unknowns in such a way
that, with respect to the time variable, they are all of the same ‘order’. Roughly speaking, gen-
eralized accelerations and Lagrange multipliers are ‘integrated twice’ by multiplication forh2,
generalized velocities are ‘integrated once’ by multiplication forh1, while generalized coordi-
nates are left unchanged. This appears to be a general rule, and is the same result obtained for
a BDF integrator in References [2, 3].

For the left preconditioning, it appears that the recipe is again one of simple multiplication
by positive powers of the time step size. In particular, the discretized dynamic equilibrium
equation must be ‘integrated twice’ by multiplication forh2, in order to reach the same ‘order’
with respect to the time variable of the kinematic and constraint equations.

Table 2 summarizes the block factors of the optimal left and right preconditioners for the
various possible implementations of Newmark’s method. ThesubscriptsD, V , K andC for the
left preconditioners refers to the dynamic, velocity, kinematic and constraint equations blocks,
respectively. The subscriptsu, v, a, λ for the right preconditioners refer to the displacement,
velocity, acceleration and Lagrange multipliers blocks, respectively.

5 NUMERICAL EXAMPLES

In order to illustrate the predictions of the above analysis, two well known problems were
solved: namely, the simple pendulum, and Andrews’ squeezing mechanism. Both problems

10
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(u, v, a, λ) (u, v, λ) (u, λ) (v, λ) (a, λ)
DL,D factor β h2 β h2 β h2 γ h2 β h2

DL,V factor 1 – – – –
DL,K factor 1 1 – – –
DL,C factor 1 1 1 1 1
DR,u factor 1 1 1 – 1
DR,v factor γ/β h γ/β h – 1/γ h –
DR,a factor 1/β h2 – – – 1/β h2

DR,λ factor 1/β h2 1/β h2 1/β h2 1/β h2 1/β h2

Table 2: Block factors of the optimal left and right preconditioners for the various possible implementations of
Newmark’s method.

were solved using the trapezoidal rule (i.e. Newmark’s method withβ = 1/4, γ = 1/2) with
the two-field(u, λ) approach.

At each time step, the non-linear discretized equations areiteratively solved by using Newton
method. At thej-th iteration, one computes the current corrections from the linear system

J jqj = −bj . (48)

The norm of the correctionsqj decreases at each iteration up to a certain saturation value. In
fact, recall that, due to accumulation of roundoff errors, we have

lim
h→0

q(h, ε) 6= 0. (49)

If further iterations are carried out, the norm of the corrections oscillates around its saturation
value, and asymptotic convergence is lost. To take into account this effect arising from finite
precision arithmetics, we arrested the iterations when theNewton corrections stop decreasing,
i.e. when the condition

‖qj+1‖ ≥ ‖qj‖ (50)

is detected. The last decreasing Newton correction norm indicates the tightest achievable con-
vergence of the Newton iteration process, which can not be further improved no matter how
many additional iterations are carried out.

For all problems, we considered the following formulations:

• no preconditioning: the discretized governing equations are left as they are originally cast
by applying the trapezoidal rule to eqs. 51;

• left preconditioning: the discretized governing equations are subjected to the scaling of
the residuals given by eq. 46;

• right preconditioning: the discretized equations are subjected to the scaling of the un-
knowns given by eq. 43;

• optimal (i.e. full right/left) preconditioning: the discretized equations are subjected to
both the right preconditioning and the left preconditioning.
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Figure 1: Simple pendulum problem. Last decreasing Newton correction norms of the displacements vs. the time
step size with the(u, λ) approach.
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Figure 2: Simple pendulum problem. Last decreasing Newton correction norms of the Lagrange multiplier vs. the
time step size with the(u, λ) approach.

5.1 The simple pendulum

The problem is governed by the following equations:

v′

x = λ ux, (51a)

v′

y = λ uy − 1, (51b)

u′

x = vx, (51c)

u′

y = vy, (51d)

0 =
1

2
(u2

x + u2
y − 1), (51e)
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Figure 3: Simple pendulum problem. Condition number for theJacobian matrix at convergence vs. the time step
size with the(u, λ) approach.
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Figure 4: Simple pendulum problem. Last decreasing Newton correction norms of the velocities vs. the time step
size with the(v, λ) approach.

whereux anduy are the Cartesian coordinates of the point mass,vx andvy the corresponding
velocity components, whileλ the intensity of the reaction force. Bar length, point mass and
acceleration of gravity are all equal to1. The point mass is initially at rest withux = 1, uy = 0,
and falls under the action of gravity. The problem was solvedin the time interval[0, 1 · 10−3],
and we used time-step sizesh = {1 · 10−1, 1 · 10−2, 1 · 10−3, 1 · 10−4}.

Figure 1 shows the behavior of the coordinate correction norm as a function ofh. It appears
that the non-preconditioned and the preconditioned solutions are all insensitive to the time step
size, as predicted. The case of the Lagrange multipliers, however, is very different: figure 2
shows that non-preconditioned multiplier corrections (aswell as the left-preconditioned ones)
display anO(h−2) behavior, while the right-preconditioned and the optimally preconditioned
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Figure 5: Simple pendulum problem. Last decreasing Newton correction norms of the accelerations vs. the time
step size with the(a, λ) approach.

corrections are insensitive to the time step size. Figure 3 shows the condition number of the
Jacobian matrix: in this case, the non-preconditioned values areO(h−4), the left- only and right-
only preconditioned values areO(h−2), while the optimally preconditioned values achieve time
step size insensitivity. These results are consistent withtable 1.

In order to complete the picture, in figures 4 and 5 we give the results of the same analy-
sis carried out with the two-field(v, λ) and (a, λ) approaches. Figure 4 shows the behav-
ior of the velocity correction norm and figure 5 that of the acceleration correction norm as
functions ofh. In the former figure, we see that non-preconditioned velocity corrections (as
well as the left-preconditioned ones) areO(h−1), while the right-preconditioned and optimally
preconditioned corrections are insensitive to the time step size. In the latter figure, the non-
preconditioned velocity corrections (as well as the left-preconditioned ones) areO(h−2), while
the right-preconditioned and optimally preconditioned corrections are again insensitive to the
time step size. Again, all results are consistent with table1.

5.2 Andrews’ squeezing mechanism

Next, we consider the well known Andrew’s squeezing mechanism, a planar holonomic
multibody system depicted in figure 6, and consisting of seven rigid bodies connected via rev-
olute joints, loaded by a spring at pointD and actuated by a constant torque driver at pointO.
The model is described in detail in Reference [8]. The problem is here formulated in terms
of the 2-D cartesian coordinates of the points E through H of the figure, along with the La-
grange multipliers which enforce the constant distance constraints between the points. We used
the time-step sizesh = {1 · 10−3, 1 · 10−4, 1 · 10−5, 1 · 10−6, 1 · 10−7}, for a duration of the
simulation of0.02 seconds.

Figures 7, 8 and 9 show, respectively, the coordinate correction norm, the Lagrange mul-
tipliers correction norm, and the condition number as functions of the time step. Here again
the results exactly agree with the ones predicted by the analysis and with those of the previous
example.
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Figure 6: Andrews’ squeezing mechanism.
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Figure 7: Andrews’ mechanism. Last decreasing Newton correction norms of the coordinates vs. the time step size
with the(u, λ) approach.

6 CONCLUDING REMARKS

In this work we have presented a novel analysis of the sensitivity to perturbations arising
from finite precision arithmetics in the solution of index-3differential-algebraic problems. The
effects of finite precision arithmetics are modeled by usinga small number, and an asymptotic
analysis is carried out. Estimates for the perturbations inthe unknowns are obtained by deter-
mining the dependence on the time step size of the residual vector and of the Jacobian matrix
of the linearized problem.

Based on this result, preconditioners are readily identified which cure the pollution problem
at its root. We analyzed the Newmark family of integrators, as a representative example of
second order integrators for finite-element multibody system analysis. The preconditioners
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Figure 8: Andrews’ mechanism. Last decreasing Newton correction norms of the Lagrange multiplier vs. the time
step size with the(u, λ) approach.
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Figure 9: Andrews’ mechanism. Condition number for the Jacobian matrix at convergence vs. the time step size
with the(u, λ) approach.

were described in detail in this work for two forms of the equations. All other possible forms
lead however to the same identical results, namely that it isalways possible to eliminate the
problem by simple scaling.

Numerical examples were used to confirm the analysis and illustrate the beneficial effects
of the preconditioning strategy. The proposed methodologyhas the potential merit, with re-
spect to other possible approaches, of being trivial to implement in an existing code. In fact it
does not require any re-writing of the governing equations and/or the introduction of additional
unknowns as commonly done with index-reduction approaches.
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