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Abstract. We propose a preconditioning strategy for the governingagiqus of multibody sys-
tems in index-3 differential-algebraic form. The methadhelates the amplification of errors
and the ill conditioning which affect numerical solutionshogh index differential algebraic
equations for small time steps. We develop a new theoretiey/sis of the perturbation prob-
lem and we apply it to the derivation of preconditioners toe Newmark family of integration
schemes. The theoretical results are confirmed by numegeriments.
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1 INTRODUCTION

Errors and perturbations due to finite precision arithnsgtigllute the numerical solution of
high index differential algebraic equations (DAES). Thadlption causes disastrous effects for
small values of the time step size. In fact, state variabheslaagrange multipliers are affected
by increasing errors as the time step size decreases. Byntlae system Jacobian matrix
becomes severely ill conditioned.

Various remedies have been offered in the multibody dynsauiterature to this problem.
Basically, all remedies point to the reduction of the indenf 3 to 2 or 1. Examples, among
many others, are the well known GGL method [4] or the morene&gnbedded Projection
Method [1]. However, these approaches require the rewriirthe governing equations. This
either increases the cost, since additional constrairdsvauitipliers are introduced, or causes
additional problems, like the drift of constraint violati&

A radically different approach consists in the preconditng of the index-3 governing equa-
tions. Reference [7] proposed a simple scaling transfaomathich led to a partial improve-
ment for both the sensitivity of the solution fields with respto perturbations and the condi-
tioning of the Jacobian matrix. In References [2, 3] it wasvahthat the pollution problem can
be completely eliminated for BDF schemes by a proper scaidgeving perfect independence
on the time step size. This is the same behavior observecinabe of ordinary differential
equations.

In this paper we offer a new theoretical analysis of the pbstion problem. Based on
the results of the analysis, we propose a preconditioniagesty for the case of the Newmark
family of integration schemes, which is representative lafrger class of commonly used time
integrators (e.g. modified-(HHT), generalizedx, etc.) The procedure amounts to a simple
scaling of the unknowns which cures the pollution problend another similar scaling of the
equations which eliminates the ill conditioning of the Jaiam matrix.

The paper is organized as follows. In Section 2 we presenasiyenptotic analysis in a
general setting, in a way that clearly separates the effddisne discretization and the per-
turbations which are due to finite precision arithmetics.Skction 3 we start by reviewing
the index-3 governing equations together with their timsecditization according to the New-
mark family of schemes. Next, we analyze two of the variousspide implementations of the
scheme, and in particular we consider the three-field (degrhents, velocities and multipliers)
and the two-field (displacements and multipliers) appreaciThe former, although probably
never employed in practice, is presented since it helpsanutiderstanding of the general fea-
tures of the proposed methodology, while the latter is oletéiby static condensation of the
velocities at each time step, and is substantially moreieffiecn terms of computational costs.
For both settings, the asymptotic analysis resulting frauti®n 2 is carried out. Section 4
discusses the preconditioning strategy for the three awoefigld approaches. Numerical re-
sults confirming the predicted behaviors are shown in Se&idome concluding remarks are
finally exposed in Section 6.

2 ASYMPTOTIC ANALYSIS FOR A LINEARIZED DYNAMIC PROBLEM

Any implicit method for the numerical integration of the edjons governing the dynamics
of a non-linear system leads to the iterative solution ohedrized problem

Jq=-b, (1)
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in the time steft,, t,+1), with time step sizé := ¢,,; — t¢,. In the preceding equatio,
represents the vector of increments for the unknowns initie $tep b represents the residual
vector, andJ is the Jacobian matrix of the problem, i.e. the tangent mafirihe residual vector
with respect to the unknowns.

It goes without saying thah, J andq all depend on the time step size Furthermore,
to model the effects of finite precision arithmetics, weandtice the dependence of all terms
appearing in eg. 1 on a small parameteExpanding in Taylor series about= 0, we have

b(h,e) = b(h,0) + ¢ ob + O(e?), (2a)
Os
(.0)
oJ )
J(h,e) = J(h,0)+¢& — + O(e?), (2b)
Oe
(.0)
dq 2
q(h,e)=q(h,0)+e —=| +0(). (2¢)
9 | n,0)

For infinite precision arithmetics, i.e. far= 0, one has at convergence of the Newton process

lim b(h,0) =0, limg(h,0) =0, 3)
so that
: , b )
lim b(h,e) =¢ lim | — + 0(e%), (4a)
h—0 h—0 \ Oe (h,0)
lim g(h,e) = lim il + O(?) (4b)
h—0 ’ h—0 \ Oc (h,0) ’

Inserting the previous expansions into eq. 1, yields

. <8b)
= —¢lim [ —

Therefore, neglecting higher order terms, we get

£ flLiH(l) J(h,0) lim <@>

Hm | == + O(£?). (5)

(h,0)

e lim (a_q) = —¢ lim J(h,0)" lim (@) : (6)
h—0 a&' (h,0) h—0 h—0 a&' (h,O)
or, in other words,
. 1 —1 .
Taking norms, we find
o < R ’ — ’
lim qz(h,e)’ < 3 [tim J5(h,0)| [t by (b, )| (8a)
< i) i pa]
< |l I (. 0)| |l b(h,€) | (8b)

Equation 8b should be interpreted on a block by block basigpfoblems characterized by
different sets of equations (e.g., dynamic equilibriurmeknatic, etc.) and different sets of
unknowns (e.g., displacements, velocities, etc.); thishgicome clearer in the next section.

3
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The previous result can be interpreted as follows: a peatiob in the evaluation of the
residual (the ternb(h, ), which will differ from zero at convergence because of fipitecision
operations or because the Newton correction has beeneattesa certain given tolerance) will
induce a perturbation in the Newton corrections (the tefm <), which, therefore, will also
not be zero at convergence). Such perturbation can be fuathplified by the exact inverse
of the Jacobian (the terid—!(h,0)). When the inverse Jacobian matrix and/or the residual
become large ak goes to zero, i.e. when these functions depend on negativerpofh, large
perturbations in the Newton corrections are observed.

Equation 8a suggests that a way of solving the problem isak for appropriate precondi-
tioners which, by suitably modifying the dependence of #sdual vector and of the Jacobian
matrix onh, will ensure the asymptotic independence on the time sipafithe Newton cor-
rections. In general, the scaled system can be written

where B
J :=D;J Dg, q:= Dg} q, b:= Db, (20)

represent the preconditioned Jacobian matrix, precamdit! solution vector and precondi-
tioned residual vector, respectivelld; is the left preconditioner, which scales the equations,
while Dy, is the right preconditioner, which scales the unknowns.

These ideas are made more precise in the context of the Néwamaily of methods in the
following section.

3 NEWMARK'S METHOD FOR MULTIBODY SYSTEMS
3.1 Problem definition

The dynamics of a degree of freedom multibody system withholonomic constraints is
governed by the equations

Mv' = f(u,v,t) + G(u,t) A, (11a)
u =, (11b)
0=®(u,t), (11c)

where the notatioK)’ = d(-)/dt indicates a derivative with respect to tirheu represents the
n dimensional vector of generalized displacementt)e n dimensional vector of generalized
velocities, and\ them dimensional vector of Lagrange multipliers that enforae ¢bnstraint
conditions. Furthermoref, is then dimensional vector of internal and external forcédgs the
m dimensional vector of constraints, a6H:= ®.” is the transpose of the constraint Jacobian.
Finally, M represents the x n generalized inertia matrix, which can be assumed constant
without loss of generality. Equations 11 amount to an in8elfferential algebraic system in
the state (differential) variablés:, v) and the multiplier (algebraic) variables

The application of the Newmark’s family of schemes to prablEl on a time step defined
between time,, and timet,,,; = t¢,, + h leads to the following discrete equations:

M a1 = for1 + G Ao, (12a)
Vp1 =0y + h (1= 7) ap +7ant1), (12b)

h2
un+1:un+hvn+?((1—25)an+2ﬁan+1), (12c)
0==®,,;. (12d)
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In the preceding equations,

o1 = F(Upg1, Vng1, tag), (13a)
Gn+l = G(un+1, tn+1)7 (13b)
D1 1= R(Untr, bny1), (13c)

while g and~ represent scalar parameters which define the accuracyiaedr{lstability prop-
erties of the scheme (see [6, 5] for a detailed discussiogqaion 12a represents the discrete
dynamic equilibrium equation, eqgs. 12b,12c define the gsdfdr the(wu, v) variables, and
finally eq. 12d exactly enforces the constraint at the entietime step.

3.2 Three-field(u, v, A) form

We consider Newmark’s method written in three-field forng three unknown fields being
(u,v,A). Eliminatinga,,.; in egs. 12 we obtain

1 1
% M (v — V) = foir + GriaAngr — <1 - ;) M a,, (14a)
2 2
Upi1 — Up = h (é Un+1 + (]- - é vn)) - h_ (1 - _ﬁ) Qn, (14b)
gl gl 2 Y
0=®,,;. (14c)

Linearizing egs. 14 leads to problem 1, where the vector &hawn incrementg; and the
residual vectob can be partitioned by blocks as

Aty bp
q:=| Avy |, b:=| bx |, (15)
AAn-‘rl bC

the subscripD indicating the row block of the dynamic equilibrium equatidl4a, the subscript
K the row block of the kinematic equations 14b, and the suptsctithe row block of the
constraint equations 14c. The expressions for the residuablocks are found to be

1 1
bp == % M (vyy1 —vn) = (farr + GuiaAngr) + <1 - ;) an; (16a)
h? 2
bK =Upy1r — Uy — h <é Un+1 + <1 - é vn)) + — <1 - _ﬁ) Qny, (16b)
g gl 2 v
bo = ®pi1. (16¢)

The Jacobian matrif reads
1
X —U -G
vh "
I _ﬁ_ I 0 )

7
G” 0 0

where we wrotez for G,, ;1 for the sake of a lighter notation, whilE is then x n identity
matrix, and finally

J = (17)

X = (o~ (@NL) (182)
Y =- (‘fv’U)nJrl ’ (18b)
U:=M+~hY. (18¢)
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The inverse Jacobian matrix is readily computed as

Bh2W WU T-'GR™
Y T -1 -1
(I — —_LT
g1 yh W 1ﬁh( WU) Bh1 GR | (19)
_R'GTT! — R'GTT! L ol
R'G e R'G U e R
having defined
T:=M +~yhY + 3Rh*X, (20a)
R=G'T'G, (20b)
S:=GR'G", (20c)
W =T 1-ST"). (20d)

3.3 Asymptotic analysis for the three-field(u, v, A) form

An estimate of the sensitivity to numerical perturbatiohthe three-field form of Newmark
method can be based on the analysis of Section 2. In partigudehave

O(h%) O(h™") O(h?)
limJ = | O O 0 : (21)
h=o o(h®) 0 0
and
lim T = O(hY), (22a)
lim R = O(hY), (22Db)
lim § = O(h%), (22c)
lim W = O(h°), (22d)
so that
O(h?)  O(h°)  O(h?)
limJ ' = | O(KY) OKh') Ohr"Y |. (23)
’HO O(h) O(h*) O(h™?)

This implies that the condition numbért := ||J||.||J || of the Jacobian matrix has the
following asymptotic behavior
}lLiH%)C =0(h™?). (24)
Furthermore, inspecting, we obtain
;lfné Abp = O(hY), (25a)
/1}“% Abg = O(hY), (25b)
}llin% Abe = O(RY). (25¢)
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Therefore, using eqg. 8b and considering the block struaitiiee arrays, we conclude

lim Au, 1| < O(RY), (26a)
}lle Av, 1| <O, (26b)
}llir% AX,y1| < O(R72). (26¢)

This result explains the commonly observed ill-conditidtehavior of the velocity compo-
nents and of the Lagrange multipliers for small values ofstieg/.

3.4 Two-field (u, A) form

Consider now a two-field implementation of Newmark methad i particular thgw, A)
case. Given the updates 12b,12c, we elimiagte andv,, .; to obtain

ﬁ Mu,iy— froi1 — GuiiAi1 — Jn =0, (27a)
P, =0, (27b)

where
jn:—M(ﬁlfLQun%—ﬁh n+<1—$) ) (28)

The linearization of eqgs. 27 leads to problem 1, with a veafarnknown incrementg and a
residual vectob given by

L AunJrl L bp
S[ama] ee[B] 29

The residual row blocks corresponding to the dynamic dopuiim (subscriptD) and constraint
equations (subscrigt) are, respectively,

bp := ﬁhQ M upi1 — for1 — GririAnt1 — Jn, (30a)

bo =B, (30D)

The Jacobian matrif reads

1
J=1| gn? T -G : (31)
G" 0

and the inverse Jacobian matrix can be computed as

Bh*W 1GR—

_RIGTT! gh2 R

J = (32)
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3.5 Asymptotic analysis for the two-field(w, A) form
Similarly to the three-field case, we get

. O(h™2) O(h%)
,131%*7:[ o) 0 } (33)
and
limJ ' = { o) O(h°) (34)
hos0 O(h®) O(h™?)

Therefore, the condition number of the Jacobian matrix haddllowing asymptotic behavior

lim € = O(h™). (35)

Furthermore, inspectinb, we obtain
lim Abp, = O(h™?), (36a)
lim Abc = O(R°), (36b)

and therefore, from eq. 8b, we find

)}liﬂ(l) Aun—l—l‘ < O(R°), (37a)
lim AX 4| < O(h™2). (37b)

3.6 Summary of results of the asymptotic analysis

Table 1 summarizes the results for the various possibledafrthe Newmark family of
methods. Clearly, the asymptotic behavior of the variouddiés always the same, irrespec-
tively of the choice of primary variables. In fact, the, v, A), (u, A), (v, A) and(a, A) forms
are obtained from théu, v, a, A) form (egs. 12) by static elimination. This operation, being
performed analytically and hence exactly, can not changeépendence anof the result.

(u,v,a,A) | (u,v,A) | (u,A) (v, A) (a,A)
Au | O(R°) O(Rh) O(h) O(h%)x | O(hY)*
Av | O(h™) O™ [OM™Hx | OMh™) | O(h )
Aa | O(h™?) Oh™2)x | O(h™*)x | O(h™2)% | O(h™2)
AX | O(h7?) Oh™2) 1 O(h™%) | O3 | O(h™?)
cC |Ooh™) Oh=3) O™ [ O3 | OHh™?)

Table 1: Summary of results for the four, three and two-fielarfs (the symbok denotes a secondary unknown
recovered from a primary one.)

On the other hand, the implementation affects the condrtiianberC’, as shown in the last
row of the same table. Notice however that the effects ofupleations on the solution sot
measured by the condition numb@r but by the asymptotic analysis of Section 2. The only
effect of C' would be felt when using an iterative solver, whose convergeate is affected by
the conditioning of the matrix. The use of iterative solvereowever quite rare in the context
of multibody dynamics problems.
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4 OPTIMAL PRECONDITIONING
4.1 Preconditioning for the three-field (u, v, A) form

Consider the following right preconditioner for the thiéadd (u, v, A) form of Newmark’s
method

I 0 0
0 L1 o0
Dy = Bh : (38)
0 0 —1T
3 h?

This scaling of the unknowns, together wii, = I, i.e. no scaling of the equations, com-
pletely solves the problem of sensitivity to perturbatidndact, considering the preconditioned
problem 9 and the expressions 16 and 19 for the residual$andverse Jacobian, we find:

O(h°) O(h°) O(n°)
limJ ' = | O(h°) O(h’) O(°) |, (39)
o O(h°) O(h°) O(n°)
so that
}lliir(l)AﬂnH < O(hY), (40a)
lim A, | < O(°), (40b)
}Lii%ﬁj\nﬂ < O(h?). (40c)

This way perfect time-step-size independence of pertimhsiin all the differential and alge-
braic variables is achieved, as in the case of well behawtidany differential equations.
Consider now the right scaling 38 together with the follogvieft scaling

Bh*I 0 O

D; = 0 I o]. (41)
0 0 1

The combination of the two cures the condition number, arfdanin this case we have

lim C' = O(h?). (42)

h—0

4.2 Preconditioning of the two-field(w, A) form
Consider the following right preconditioner:

I 0
DR!O 11] (43)

lim J ! = { O(h) Oh) ] , (44)
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so that we have again perfect time-step-size independdrnmerturbations in the differential
and algebraic variables:

lim Adi, | < O(”), (45a)
lim A1 < O(RY). (45b)

Considering now the right scaling 43 together with the fwellog left scaling

| R o
p.- | 5T Y] (46)
we have time-step-size independence for the condition eumb
lim C' = O(h°). (47)

h—0
4.3 Some remarks on preconditioning

It appears that the recipe for curing the numerical diffiesltarising from finite precision
arithmetics in DAEs can be split into two separate actions:

e a right preconditioning (i.e. a scaling of the unknowns) ethcures the sensitivity to
perturbations of the solution, and

e a left preconditioning (i.e. a scaling of the equations)akhion top of the former, cures
the conditioning of the Jacobian matrix.

As discussed earlier, we stress that the former of thesedtiana is the one that really matters
in the general case, while the latter is relevant only whepleying an iterative solver for the
solution of problem 1.

As a matter of fact, the right preconditioner works by saglihe unknowns in such a way
that, with respect to the time variable, they are all of thmeséorder’. Roughly speaking, gen-
eralized accelerations and Lagrange multipliers aregdiratied twice’ by multiplication foh?,
generalized velocities are ‘integrated once’ by multiglion for 4!, while generalized coordi-
nates are left unchanged. This appears to be a general ndlés the same result obtained for
a BDF integrator in References [2, 3].

For the left preconditioning, it appears that the recipeg@imone of simple multiplication
by positive powers of the time step size. In particular, tieemtized dynamic equilibrium
equation must be ‘integrated twice’ by multiplication f@¥, in order to reach the same ‘order’
with respect to the time variable of the kinematic and c@amstrequations.

Table 2 summarizes the block factors of the optimal left agbtrpreconditioners for the
various possible implementations of Newmark’s method. Stitescriptd), V', K andC for the
left preconditioners refers to the dynamic, velocity, kivegic and constraint equations blocks,
respectively. The subscripts v, a, A for the right preconditioners refer to the displacement,
velocity, acceleration and Lagrange multipliers blockspectively.

5 NUMERICAL EXAMPLES

In order to illustrate the predictions of the above analysi® well known problems were
solved: namely, the simple pendulum, and Andrews’ squegeziachanism. Both problems

10
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(u,v,a,A) | (u,v,A) | (u,A) | (v,A) | (a,A)
Dy, p factor | 3 h? 3 h? B h? v h? B h?
DL,V factor | 1 - - - -
Dy k factor | 1 1 - - -
Dy ¢ factor | 1 1 1 1 1
Dg,, factor | 1 1 1 - 1
Dg, factor | v/Gh v/Bh — 1/vh |-
Dg, factor | 1/3h? - - - 1/8h?
Dg factor | 1/3h? 1/Bh* | 1/BR* | 1/B8h? | 1/8h?

Table 2: Block factors of the optimal left and right precdratiers for the various possible implementations of
Newmark’s method.

were solved using the trapezoidal ruiee( Newmark's method withg = 1/4, v = 1/2) with
the two-field(u, A) approach.
At each time step, the non-linear discretized equationgexnaively solved by using Newton
method. At thej-th iteration, one computes the current corrections froalitiear system
Jig = -t (48)
The norm of the correctiong’ decreases at each iteration up to a certain saturation.vadue
fact, recall that, due to accumulation of roundoff errors,lvave

}lLin% q(h,e) #0. (49)

If further iterations are carried out, the norm of the coticets oscillates around its saturation
value, and asymptotic convergence is lost. To take intowaucthis effect arising from finite
precision arithmetics, we arrested the iterations wheriNgagton corrections stop decreasing,

i.e. when the condition ' '
g’ > llg’|] (50)

is detected. The last decreasing Newton correction norimcates the tightest achievable con-
vergence of the Newton iteration process, which can not kéduimproved no matter how
many additional iterations are carried out.

For all problems, we considered the following formulations

e no preconditioning: the discretized governing equationdeft as they are originally cast
by applying the trapezoidal rule to egs. 51;

e left preconditioning: the discretized governing equadiamne subjected to the scaling of
the residuals given by eq. 46;

e right preconditioning: the discretized equations are attied to the scaling of the un-
knowns given by eq. 43;

e optimal (i.e. full right/left) preconditioning: the disetized equations are subjected to
both the right preconditioning and the left preconditianin

11
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Figure 1: Simple pendulum problem. Last decreasing Newtorection norms of the displacements vs. the time
step size with théu, A) approach.
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Multiplier Newton correction at convergence
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Figure 2: Simple pendulum problem. Last decreasing Newtorection norms of the Lagrange multiplier vs. the
time step size with théu, \) approach.

5.1 The simple pendulum

The problem is governed by the following equations:

vl = Ay, (51a)
v, = Auy — 1, (51b)
ul, = vy, (51c)
u; = Uy, (51d)

0= 5 (ul 4+ u2 — 1), (51e)



Carlo L. Bottasso, Daniel Dopico and Lorenzo Trainelli
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Left preconditioning
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Condition of Jacobian J_at conver

Figure 3: Simple pendulum problem. Condition number foriaeobian matrix at convergence vs. the time step
size with the(u, \) approach.
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Figure 4: Simple pendulum problem. Last decreasing Newtorection norms of the velocities vs. the time step
size with the(v, A) approach.

whereu, andu, are the Cartesian coordinates of the point massndv, the corresponding
velocity components, whila the intensity of the reaction force. Bar length, point mass a
acceleration of gravity are all equaltoThe point mass is initially at rest with, = 1, u,, = 0,
and falls under the action of gravity. The problem was solwetthe time interval0, 1 - 1073],
and we used time-step sizes= {1-1071,1-1072,1-1073,1 - 107}.

Figure 1 shows the behavior of the coordinate correctiomrems a function oh. It appears
that the non-preconditioned and the preconditioned soigtare all insensitive to the time step
size, as predicted. The case of the Lagrange multiplienseher, is very different: figure 2
shows that non-preconditioned multiplier correctionsWadl as the left-preconditioned ones)
display anO(h~2) behavior, while the right-preconditioned and the optimaiteconditioned

13
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Figure 5: Simple pendulum problem. Last decreasing Newtorection norms of the accelerations vs. the time
step size with théa, \) approach.

corrections are insensitive to the time step size. Figurkaddvs the condition number of the
Jacobian matrix: in this case, the non-preconditionedesadue) (h—*), the left- only and right-
only preconditioned values aéh~2), while the optimally preconditioned values achieve time
step size insensitivity. These results are consistenttafile 1.

In order to complete the picture, in figures 4 and 5 we give #sellts of the same analy-
sis carried out with the two-fieldv, A) and (a, A) approaches. Figure 4 shows the behav-
ior of the velocity correction norm and figure 5 that of the elecation correction norm as
functions ofh. In the former figure, we see that non-preconditioned vetambrrections (as
well as the left-preconditioned ones) &@p¢h 1), while the right-preconditioned and optimally
preconditioned corrections are insensitive to the time stee. In the latter figure, the non-
preconditioned velocity corrections (as well as the leéigonditioned ones) ar@(h2), while
the right-preconditioned and optimally preconditionedrections are again insensitive to the
time step size. Again, all results are consistent with tdble

5.2 Andrews’ squeezing mechanism

Next, we consider the well known Andrew’s squeezing medmania planar holonomic
multibody system depicted in figure 6, and consisting of seigid bodies connected via rev-
olute joints, loaded by a spring at poibtand actuated by a constant torque driver at point
The model is described in detail in Reference [8]. The pnmobig here formulated in terms
of the 2-D cartesian coordinates of the points E through Hefftigure, along with the La-
grange multipliers which enforce the constant distanceiramts between the points. We used
the time-step sizes = {1-1073,1-10"*1-1075,1-107%,1- 1077}, for a duration of the
simulation of0.02 seconds.

Figures 7, 8 and 9 show, respectively, the coordinate ciooreaorm, the Lagrange mul-
tipliers correction norm, and the condition number as fiomg of the time step. Here again
the results exactly agree with the ones predicted by the/sisand with those of the previous
example.
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Figure 6: Andrews’ squeezing mechanism.
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Figure 7: Andrews’ mechanism. Last decreasing Newton ctoe norms of the coordinates vs. the time step size
with the (u, A) approach.

6 CONCLUDING REMARKS

In this work we have presented a novel analysis of the seitgito perturbations arising
from finite precision arithmetics in the solution of indexii&erential-algebraic problems. The
effects of finite precision arithmetics are modeled by usirggnall number, and an asymptotic
analysis is carried out. Estimates for the perturbatiorteénunknowns are obtained by deter-
mining the dependence on the time step size of the residetdivand of the Jacobian matrix
of the linearized problem.

Based on this result, preconditioners are readily idedtifrteich cure the pollution problem
at its root. We analyzed the Newmark family of integrators,aarepresentative example of
second order integrators for finite-element multibody eystanalysis. The preconditioners
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Figure 8: Andrews’ mechanism. Last decreasing Newton ctiaie norms of the Lagrange multiplier vs. the time
step size with théu, A) approach.
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Figure 9: Andrews’ mechanism. Condition number for the b&omatrix at convergence vs. the time step size
with the (u, X) approach.

were described in detail in this work for two forms of the etjpres. All other possible forms
lead however to the same identical results, namely thatatways possible to eliminate the
problem by simple scaling.

Numerical examples were used to confirm the analysis anstrdlte the beneficial effects
of the preconditioning strategy. The proposed methodolwag/ the potential merit, with re-
spect to other possible approaches, of being trivial to @mant in an existing code. In fact it
does not require any re-writing of the governing equatiord@r the introduction of additional
unknowns as commonly done with index-reduction approaches
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