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 Abstract— The floating frame of reference formulations are 
widely used for the modelling of flexible bodies in multibody 
systems. In the particular case of beams, the geometric stiffening 
effect is often lost due to the assumption of linear elastic forces. 
This paper discusses the implementation of different existing 
methods developed to consider such geometric nonlinearities 
within a floating frame of reference formulation, making empha-
sis on the relation between efficiency and accuracy of the result-
ing algorithms, seeking to provide practical criteria of use. 
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I. Introduction 
 One of the most common methods of flexible body 
modelling in multibody systems is the floating frame of 
reference approach (FFR) [1], in which a local frame of 
reference is attached to the flexible body, so that the elas-
tic deformation is measured in the local frame and super-
imposed to the large amplitude motion, undergone by the 
reference frame. Small deformation theory is applied and, 
therefore, it cannot be used in large deformation problems. 
In specific applications, such as helicopter rotor blades, 
the stiffening effect appears due to the geometrical 
nonlinearity. Helicopter rotor blades are bent by their own 
weight, but the rotation speed makes them rise up to the 
horizontal position, due to centrifugal forces, as if the 
bending stiffness increased [2], [3], [4], [5]. In a linear 
model, this effect is not captured due to the absence of 
coupling between axial and transversal deformation, 
which implies that rotational speed has no effect on bend-
ing, but only on the radial displacement. 
 There exist several techniques aimed to include this 
effect in beams. In this paper, the implementation of two 
of them in a FFR formulation is described, and the results 
are compared to those obtained with a global, finite ele-
ment based, nonlinear formulation, the ANCF [1], [6]. 
 
II. The Specific FFR Formulation 
 
 The equations of motion, according to an index-3 aug-
mented Lagrangian formulation in natural dependent co-
ordinates [7], are stated in the form, 

 
 *T Tα+ + =q qMq Φ Φ Φ λ Q  (1) 

where q is the vector of natural coordinates, M is the mass 
matrix, , qΦ Φ  are the constraints vector and its Jacobian 
matrix, Q is the vector of elastic, applied and velocity-
dependent inertia forces, and λ∗ is the Lagrange multipli-
ers vector, obtained from an iterative process carried out 
within each time-step, 

 
 * *

1 1 0,1, 2,...i i i iα+ += + =λ λ Φ  (2) 
 

which starts with *
0λ  equal to the value of *λ obtained in 

the previous time-step. These equations are integrated in 
time by means of a Newmark-type integrator, along with 
velocity and acceleration projections at the end of each 
time-step to preserve stability [7]. 
 The case of a planar flexible beam is to be described for 
the sake of simplicity. However, the procedure can be 
generalized to the 3D case. 
 The considered FFR approach defines the deformation 
of a flexible planar beam in a local reference frame, which 
is attached to a material point of the beam and undergoes 
the large amplitude rigid-body motion. The position r of 
any point of the solid can be expressed as, 
 
 ( )0 u= + +r r A r δ  (3) 
 
where r0 is the position of the local frame origin, A the 
rotation matrix defined by the two orthogonal local unit 
vectors [ ]u v , ur  the undeformed position in local co-
ordinates, and δ the local elastic displacement. 
 Using the finite element method to discretize the beam 
with 2D beam elements, the neutral axis displacement 
within a finite element e, 0

eδ , can be interpolated from its 
nodal displacements, e

fq , by means of the interpolation 
matrix, eS , which can be split into longitudinal and trans-
versal interpolation submatrices, e

lS  and e
tS , 
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where 0u  and 0v  are the local components of 0

eδ . 
 The dimension of the finite element model is reduced by 
using component mode synthesis, in this case a Craig-
Bampton reduction, with static and dynamic modes [7], 
[9]. This reduction consists of approximating the vector of  
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nodal displacements by means of a linear combination of 
ns static modes iΦ  and nd dynamic modes jΨ , 
  

 
1 1

ns nd

f i i j j
i j

η ξ
= =

= +∑ ∑q Φ Ψ  (5) 

 
where qf is a vector grouping all the nodal displacements 
of the beam, and the coefficients ηi and ξj are the modal 
amplitudes. This can be written in a more compact matrix 
form, 
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q Φ Φ Ψ Ψ Xy  (6) 

 
Compatibility constraints must be added in order to relate 
the amplitudes of the static modes to the corresponding 
joint displacements. Finally, the vector of variables for a 
single flexible beam results, 
 
 { }0 1 1

T
ns ndη η ξ ξ=q r u v  (7) 

 
 With all the flexible body kinematics defined, the mass 
matrix can be calculated. The elastic displacement can be 
particularized to node i as 0

i i i
f= =q X yδ , being iX  the 

couple of rows of X corresponding to the longitudinal and 
transversal displacements of node i. The absolute velocity 
of node i, vi, can be calculated by substituting its elastic 
displacement in Eq. (3), and differentiating with respect to 
time, 
 
 ( )0

i i i i
u= + + +v r A r X y AX y  (8) 

 
 The co-rotational approximation [7], [8], consists of 
interpolating the velocity of any given point inside a finite 
element from the velocities of its nodes, through the dis-
placement interpolation matrix eS . Accordingly, the ki-
netic energy can be written in terms of the nodal velocities 
v and the finite element mass matrix MFEM, 
 

 1 1 1
2 2 2

T T T T
FEMV V

T dm dm= = =∫ ∫r v S Sv v M vr  (9) 

 
where S contains the assembled interpolation matrices of 
all the finite elements of the flexible body. Eq. (8) can be 
written in matrix form for all the nodes, since it is linear 
with respect to the generalized velocities q , 
 

 ( )=v B q q  (10) 
 
Finally, this relationship can be substituted into Eq. (9) to 
obtain the mass matrix, 
 
 T

FEM=M B M B  (11) 
 
 Velocity-dependent inertia forces T

v FEM= −Q B M Bq  
must be added to the generalized forces vector Q. The 
calculation of the elastic forces will be addressed in the 
following section. 
 
III. Geometric Nonlinearity Consideration 
 
 The elastic displacements field δ(x,y) of an Euler-
Bernoulli beam takes the following vector form [5], 
 

 ( ) 0 0

0

,
u yvu

x y
vv

′−⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

δ  (12) 

 
where u0 and v0 are the axial and transversal displace-
ments of the neutral axis, and the apostrophe indicates 
differentiation with respect to the x coordinate. The 
nonlinear strain-displacement relationship in x direction 
can be expressed as, 
 

 ( ) ( ) ( )2 2 21 1
2 2xx u u v u vε ⎡ ⎤′ ′ ′ ′ ′= + + ≅ +⎣ ⎦  (13) 

 
where the term ( )2u′  is often dropped since it is much 
smaller than u′ . The elastic potential of the beam depends 
on this strain field, 
 

 21
2 xxV

U E dVε= ∫  (14) 

 
where E is the Young modulus and V is the volume of the 
beam. Introduction of the displacement field described by 
Eq. (12) in the strain-displacement relationship, yields the 
deformation energy of the beam in terms of the neutral 
axis deformed shape [5], 
 

 

( ) ( )

( ) ( )
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∫ ∫
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 (15) 

 
with A the cross-sectional area and I the second moment 
of area with respect to the neutral axis. 
 Different levels of approximation can be achieved de-
pending on which terms of Eq. (15) are kept: they are 
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discussed in the following sub-sections. 
 
A. Linear formulation 
 The linear formulation includes only the first two terms 
of Eq. (15) in the elastic potential, neglecting the higher 
order ones. Introducing the finite element discretization in 
the equation and integrating the interpolation functions, 
the following expression can be obtained for the elastic 
potential in terms of the finite element coordinates, 
 

 1
2

T FEM
f L fU = q K q  (16) 

 
Here, FEM

LK  is the linear stiffness matrix, which is con-
stant, and qf is a vector containing the nodal displacements 
of the whole beam. This potential can be projected to the 
modal base by using matrix X, 
 

 1 1
2 2

T T FEM T
L LU = =y X K Xy y K y  (17) 

 
By differentiation of the elastic potential, an expression 
for the elastic forces is obtained, 
 

 
T

el L
U⎛ ⎞∂

= − = −⎜ ⎟∂⎝ ⎠
F K y

y
 (18) 

 
which is a linear relationship between the forces and the 
modal amplitudes. A closer look to the potential used in 
this formulation reveals the cause of its inability to cap-
ture geometric stiffening effects: axial and transversal 
displacements separately contribute to the deformation 
energy. 
 
B. First nonlinear formulation 
 When the third term of Eq. (15) is considered too, the 
coupling between axial and transversal deformation is 
introduced through the integral of ( )2

0 0u v′ ′ . This allows to 
capture the geometric stiffening effect, at the cost of a 
non-constant stiffness matrix, as it will be shown below. 
 The same steps as in the linear formulation must be 
carried out to obtain the elastic potential: the u0 and v0 
derivatives are substituted by their finite element interpo-
lations, and the integrals are evaluated; then, writing it in 
matrix form [3], [4], 
 

 ( )1
2

T FEM FEM
f L G fU = +q K K q  (19) 

 
The geometric stiffness matrix FEM

GK  is variable, and 
must be calculated at every time-step. In case that the 
axial displacement u0 has a linear distribution, the strain is 
constant along the whole beam, and FEM

GK  can be ex-

pressed as the product of a scalar variable times a constant 
matrix. But in any other case, this is only applicable to 
each finite element, and the matrix must be assembled at 
every time-step, which is rather inefficient.  
 It is better to express u0 and v0 in terms of the mode 
shapes and then carry out the spatial integration. First, the 
neutral axis displacements are approximated by the modal 
superposition, 
 

 
( ) ( ) ( )

( ) ( ) ( )

0
1 1

0
1 1

ns nd
i j
l i l j

i j

ns nd
i j
t i t j

i j

u x x x

v x x x

φ η ψ ξ

φ η ψ ξ

= =

= =

= +

= +

∑ ∑

∑ ∑
 (20) 

 
where the subindices l and t indicate longitudinal or trans-
versal component, respectively. These approximated dis-
placements are then used to calculate the integral. The 
analytical functions of the mode shapes are usually known 
for a beam and, therefore, they can be directly integrated. 
In the case that the modes are finite element displacement 
vectors, integrals must be calculated by using the interpo-
lation functions. The geometric stiffness matrix, already 
projected to the modal subspace, takes the following lin-
ear combination form, 
 

 
1 1

ns nd
i j

G i G j G
i i
η ξ

= =

= +∑ ∑K K K  (21) 

 
where all the i

GK  and j
GK  matrices are constant, and 

have the form, 
 

 { }

1

1 1
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t
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G l t t t t
t
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EA dx

φ

φ
φ φ φ ψ ψ

ψ

ψ

′⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪′⎪ ⎪′ ′ ′ ′ ′= ⎨ ⎬′⎪ ⎪
⎪ ⎪
⎪ ⎪

′⎪ ⎪⎩ ⎭

∫K  (22) 

  
with j

lψ ′  instead of i
lφ′  for j

GK . These matrices are non-
zero for mode i or j only if the mode is longitudinal, so 
that there is one nonzero matrix for each axial mode. 
 Differentiation of the elastic potential with respect to y, 
neglecting the term which contains the derivative of KG, 
yields the elastic forces vector, 
 

 ( )
T

el L G
U⎛ ⎞∂

= − = − +⎜ ⎟∂⎝ ⎠
F K K y

y
 (23) 

 
 The modifications needed to implement this in the for-
mulation are minimal. First, all the integrals of Eq. (22) 
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must be calculated, thus obtaining one constant matrix for 
each axial mode. Then the KG matrix is computed at every 
time-step by using Eq. (21) and added to KL to obtain the 
elastic forces.  
 
C. Second nonlinear formulation 
 In this formulation, the four terms of the elastic energy 
in Eq. (15) are considered, being the most suitable for 
severe deformation conditions but, logically, at the cost of 
a higher computational effort. 
 

 ( )1
2

T FEM FEM FEM
f L G H fU = + +q K K K q  (24) 

 
The inclusion of the higher order term adds a second-
order nonlinear matrix FEM

HK , and the elastic forces are 
obtained by differentiation, 
 

 ( )
T

FEM FEM FEM
el L G H f g

f

U⎛ ⎞∂
=− =− + + +⎜ ⎟⎜ ⎟∂⎝ ⎠

F K K K q Q
q

 (25) 

 
where all the terms depending on the derivatives of the 
non-constant K matrices are grouped into the generalized 
nonlinear forces vector Qg. The main problem of this 
formulation is that it needs a high number of axial modes 
to obtain accurate results [3], [4], making its use impracti-
cal. 
 
D. Foreshortening formulation 
 The axial shortening of a beam due to its deflection is 
known as foreshortening (figure 1). 
 

x

y
ufs

 
Fig. 1. Foreshortening produced by deflection. 

 
This effect cannot be captured by using the linear or 
nonlinear formulations. The explicit inclusion of the fore-
shortening effect in the model leads to a simpler and more 
efficient method [3], [4], and provides the same level of 
accuracy as the second nonlinear formulation. 
 The axial displacement of the neutral axis can be divided 
into the axial deformation produced by the actual axial 
forces, s, and the shortening produced by the deflection ufs 
 
 0 fsu s u= +  (26) 
 
This shortening can be calculated from a reference point 
x0, which has zero axial displacement, by means of the 
following integral, 

 ( ) ( )
0

2

0
1
2

x

fs x
u x v dx′= − ∫  (27) 

 
This expression comes from the projection on the x axis of 
the difference between the undeformed length dx and the 
deformed length of arc 2

01ds v dx′= + . Substituting the 
longitudinal displacement of Eq. (26) into Eq. (15), yields 
the following expression for the elastic potential, 
 

 ( ) ( )2 2
00 0

1 1
2 2

L L
U EA s dx EI v dx′ ′′= +∫ ∫  (28) 

 
It is observed that the elastic energy has the same form as 
in the linear formulation, although the meaning is differ-
ent. The stiffness matrix is the same as the one used for 
the linear case KL, and so happens with the elastic forces. 
Therefore, the stiffening effect does not appear now in the 
elastic forces: it is translated to the inertia and constraint 
forces, since the foreshortening is introduced at kinemat-
ics level. 
 In order to calculate the total foreshortening on a finite 
element, the nodal displacement must be modified so that, 
 

 0
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0 0

e e
e el fs

fe
t

u u
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⎛ ⎞ ⎛ ⎞⎛ ⎞
= = +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

S
δ q

S
 (29) 

 
where e

fsu  is the foreshortening produced in that finite 
element by its own deflection, and can be calculated by 
applying Eq. (27) over the whole length of the element, 
Le. Substituting 0v′  by its interpolation, 
 

 
0

1 1
2 2

e
Te eLe eT e eT e et t

fs f f f fu dx
x x

∂ ∂
= − = −

∂ ∂∫
S S

q q q H q  (30) 

 
The shortening suffered by one element is then a quadratic 
function of the nodal coordinates, where eH  is a constant 
matrix depending only on the transversal interpolation 
functions and the length of the element. 
 

x

y

2 n1

un
fs

 
Fig. 2. Accumulated foreshortening at element n. 

 
 The total shortening accumulated by the finite elements 
located between the reference node (with zero axial dis-
placement) and the finite element n, itself included, is the 
sum of all the element-level shortenings, as shown in 
figure 2, 
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This expression can be written in matrix form for each 
element, assembled for all the finite element coordinates 
of the beam, and then projected to the modal subspace, 
 

1 1 1
2 2 2

n T n T T n T n
fs f acc f accu = − = − = −q H q y X H Xy y G y  (32) 

 
If analytical functions are available for the modal shapes, 
these nG  matrices can be directly calculated by using the 
second expression of Eq. (20) to evaluate Eq. (27), 
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where nL  is the length of the beam from the reference 
point to the end node (node i) of finite element n. If the 
modes are finite element displacement vectors, the inte-
grals must be calculated by using the interpolation func-
tions. 
 Therefore, the elastic displacement of node i is now, 
 

0

11
020 0

n n
i i i i T nfs fs

f
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= + = + = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
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q X y X y y G yδ  (34) 

 
Substituting this displacement into Eq. (3), and carrying 
out the time derivative results, for the nodal velocity, 
 
 ( ) ( )0

i i i i i
u fs fs fs= + + + +v r A r X y A X y X y  (35) 

 
where Xfs is a variable matrix, which depends linearly on 
the modal amplitudes y, 
 

 
11
02

i i T i
fs

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
X X y G  (36) 

 
 In order to implement the foreshortening in the equa-
tions of motion, the nG  accumulated shortening matrices 
must be first calculated and stored in a preprocessing 
stage. Then the new Xfs matrix, which is no longer con-
stant, is calculated at every time-step and used to calculate 
matrix B, as it was done in Eq. (8)  
 These changes affect to the mass matrix, the velocity-
dependent and applied force vectors. Moreover, those 

constraints involving nodes undergoing foreshortening 
must also be modified, since transversal modes affect the 
beam length. Therefore, the geometric stiffening effect is 
considered now through inertia and constraint forces, 
instead of through the elastic forces, as happened in the 
first and second nonlinear formulations. 
 
IV. Test Model and Results 
 
 The model used is a typical example of geometric stiff-
ening [2], [3], [4], [5], a 2D beam articulated at one of its 
ends, with the following characteristics: length, L=10 m; 
cross-sectional area, A=4,0·10-4 m2; second moment of 
area, I=2,0·10-7 m4; density, ρ=3000 Kg/m3; Young 
modulus: E= 7,0·1010 N/m2. The effect of gravity is ne-
glected, and the beam spins an angle ( )tθ  around the 
articulation, 
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 (37) 

 
 The time history of the in-plane tip deflection in local 
coordinates is recorded for Ts=15 s and ωs=6 rad/s. 
 The beam is modelled with 10 finite elements, one 
transversal static mode and two transversal dynamic 
modes. A reference solution has been calculated with a 
global, finite-element based formulation, the ANCF [1], 
[6], which uses absolute positions and slopes as coordi-
nates in a global inertial reference frame. This formulation 
applies nonlinear strain-displacement relationships so 
capturing all nonlinear effects, including geometric stiff-
ening. In the simulation of reference, 15 elements were 
used. 
 The results obtained through the different formulations 
are discussed in the following subsections. 
 

0 2 4 6 8 10 12 14 16 18 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time(s)

T
ip

 d
ef

le
ct

io
n 

(m
)

 

 

ANCF
Linear

 
Fig. 3. Linear vs. ANCF. 
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Fig. 4. First nonlinear formulation vs. ANCF. 

 
A. Linear formulation 
 The linear formulation cannot account for the geometric 
stiffening effect. As it can be seen in figure 3, the tip de-
flection increases indefinitely because there is no coupling 
between axial and transversal displacements. 
 
B. First nonlinear formulation 
 This formulation needs to include at least one axial 
mode, as the geometric stiffness matrix depends on the 
axial deformation. In the example, the axial displacement, 
caused by centrifugal forces, has a nonlinear distribution, 
so that the first dynamic axial mode is required to achieve 
reasonable accuracy. Figure 4 shows that using only one 
linear static mode (FNL1 curve) yields unacceptable re-
sults. Therefore, two axial modes are needed at least to 
correctly simulate the motion of the beam (FNL2 curve). 
 

0 2 4 6 8 10 12 14 16 18 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time(s)

T
ip

 d
ef

le
ct

io
n 

(m
)

 

 

ANCF
FS

 
Fig. 5. Foreshortening formulation vs. ANCF. 

 
C. Foreshortening formulation 
 The foreshortening formulation (FS curve in figure 5) 
achieves the best results, despite the absence of axial 
modes. The quality of the correlation becomes more obvi-

ous at the steady-state stage, where the first nonlinear 
formulation shows a higher oscillation amplitude. 
 
D. Efficiency comparison 
 The following table shows the CPU-times for all the 
simulations, run with the same integrator and parameters, 
with a time-step of 0,01 s. The formulations are sorted by 
accuracy: first nonlinear with one axial mode (FNL1), 
first nonlinear with two axial modes (FNL2), and fore-
shortening (FS). The ANCF, several orders of magnitude 
slower, has not been included in the table. 

 
Formulation FNL1 FNL2 FS 
Time (s) 11,03 12,96 10,13 

 
TABLE I. CPU-times for all the formulations. 

 
V. Conclusions 
 
 As has been shown in the tests, the linear formulation 
yields incorrect results, what means that any of the higher 
order formulations must be used. The first nonlinear for-
mulation is very easy to implement, but presents some 
problems, since only one axial mode is not sufficient for 
obtaining accurate results, and the use of axial modes of 
high natural frequencies hinders the integration process. 
The foreshortening formulation has proven to be the fast-
est and also the most accurate. It doesn’t require the use of 
axial modes, although they could be added in case that 
axial stresses were needed. 
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