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Abstract— Among the different methods proposed for
real-time dynamics of multibody systems, penalty and aug-
mented Lagrangian techniques have been widely used, in
order to convert the system of differential algebraic equa-
tions (DAE) into a system of ordinary differential equations
(ODE), whose integration presents a lower level of diffi-
culty. In both cases, penalty forces which are proportional
to the violation of the constraints at position, and/or ve-
locity, and/or acceleration level, are included in the equa-
tions of motion in order to ensure the satisfaction of the
constraints and, if possible, of their derivatives.

In principle, consideration of penalty forces which are
only proportional to the violation of the constraints at po-
sition level is the most attractive option, since the velocity
level implies energy dissipation, and the acceleration level
is computationally expensive. However, the solutions ob-
tained through such option show unstable behavior due to
the progressive and unbounded growth of the constraints
energy, effect even more acute in the case of augmented La-
grangian formulations.

Several methods have been proposed in the literature
in order to stabilize the mentioned solutions. In a pre-
vious work, two of those methods were revised and their
respective stabilizing properties compared: an energy-
momentum integrator, and the trapezoidal rule along with
mass-orthogonal projections of velocities and accelerations
onto the constraints manifold. In both cases, natural co-
ordinates were used for the modeling, and the equations
of motions were stated through the augmented Lagrangian
formulation. In this work, the same two methods are com-
pared in terms of efficiency by simulating a large and real-
istic problem.
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I. Introduction

Several considerations are important if we try to carry
out fast and precise simulations in multibody dynamics:
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the choice of modeling coordinates, the choice of the dy-
namical formulation, and the numerical integration scheme
along with the numerical implementation. All these matters
are essential in order to decide whether a specific method is
suitable for a particular purpose.

Some of the most robust methods for the real-time dy-
namics of multibody systems make use of natural or fully
Cartesian coordinates [9], which are dependent by nature,
and lead to systems of differential-algebraic equations of
motion (DAE) [5].

In order to solve such DAE in natural coordinates, differ-
ent formulations have been developed, like Baumgarte sta-
bilization [1], penalty and augmented Lagrangian schemes
[2], or velocity transformations [18], [16].

Formulations based on penalty and augmented La-
grangian methods have the advantages of being very sim-
ple, computationally inexpensive and very robust in the
presence of singular configurations or redundant constraints
[4].

Generally, it can be said that the choice of the dynamic
formulation determines that of the numerical integrator. In
this direction, different authors proposed several options
to successfully integrate the equations arising from con-
strained multibody systems, using integrators coming from
the field of structural dynamics [9], [11], [6].

In [4], [6], the use of augmented Lagrangian techniques
with penalty only at position level along with the trape-
zoidal rule was proposed. In order to guarantee the cor-
rect satisfaction of the constraints, velocity and acceleration
projections were proposed. More recently, [8] proposed
the use of augmented Lagrangian techniques with other in-
tegrators of the Generalized-α family along with projec-
tions, obtaining very good behavior for real-time applica-
tions. The advantages of the projections are the simplicity
and that they can be used with a great variety of integrators.
The projections are responsible for maintaining the stability
of the formulation.

On the other hand, other authors, [12], [10], [13], devel-
oped a formulation based on an energy conserving penalty
scheme, enforcing the constraints at the position level, and
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applied it to the dynamics of multibody systems parame-
trized with natural coordinates. In this case, the use of
penalty at position level has the advantage of enabling to
derive the constraint forces from a potential function: the
constraint energy. The formulation employs an energy-
momentum integrator as integration scheme [17], [14], so
that the conservation of the total energy of the system is
imposed by construction of the algorithm. Here, the stabi-
lization of the penalty equations of motion arises in a nat-
ural manner from the integration scheme.

II. Augmented Lagrangian Formulation

Many different methods have been proposed in the liter-
ature for the dynamics of constrained mechanical systems.
The formulation of the equations of a constrained mechan-
ical system poses some numerical difficulties. These dif-
ficulties are, in general, different for each formulation and
solution method, but are typically related to stability prop-
erties of the numerical scheme. Such problems motivate
the interest in developing algorithms capable of providing
stable and accurate solutions.

In this work, we restrict ourselves to the methods based
on the augmented Lagrangian formulation, which can be
understood as a compromise between the Lagrange multi-
plier formulation, and the penalty formulations.

A. Description of the formulation

Let us consider a multibody system, with a configuration
defined by a vector q ∈ �n. The system is also subjected
to m holonomic constraints Φ ∈ �m involving the different
points and vectors of the system. The dynamic equations
constitute an index-3 DAE system of n+m equations given
by:

Mq̈ + ΦT
qαΦ + ΦT

qλ∗ = Q , Φ = 0 (1)

where M is the mass matrix, Q is the generalized forces
vector of the system, λ represents the Lagrange multiplier
vector, α is a penalty factor, and Φq is the Jacobian matrix
of the constraints vector.

In practice, the augmented Lagrangian formulation,
transforms the DAE into a system of ordinary differential
equations (ODE), defining an iterative update for the multi-
pliers, given by λ∗

i+1 = λ∗
i +αΦ verifiying that λ∗ → λ as

i → ∞, which means that, in the limit, the iterative scheme
for the Lagrange multipliers leads to the true Lagrange mul-
tipliers. Moreover, the iteration update for the multipliers,
prevents introducing the Lagrange multipliers as unknowns
of the problem, so that the system of n + m equations is
replaced by another one of size only n.

Mq̈ + ΦT
qαΦ + ΦT

qλ∗ = Q , λ∗
i+1 = λ∗

i + αΦ (2)

In order to solve the nonlinear equations (2), the use of
Newton-Raphson schemes is recommended, and then it is

possible and convenient to mix up the Newton-Raphson it-
eration and the Lagrange multipliers iteration. Several au-
thors have used methods based on the equations (2) for the
dynamics of multibody systems. This equations show a
slightly unstable behavior with most of the commonly used
integrators, characterized by the drift-off effect and a pro-
gressive and unbounded growth of the total energy of the
system.

III. Index-3 augmented Lagrangian with projections

This formulation was presented in [6], [7]. It is based on
the an augmented Lagrangian equations (2).

The augmented Lagrangian formulation can be com-
bined with any standard integrator, and achieves the exact
fulfillment of the position constraints, but usually exhibits
an unstable behavior, even with ODE integrators suited to
stiff systems.

Based on previous results obtained in the literature, it can
be said that the numerical solution of a constrained mechan-
ical system seems to be more stable on the constraints man-
ifold than off it. Based on this fact, the exact enforcement
of the constraints at velocity and acceleration levels (Φ̇ = 0
and Φ̈ = 0 respectively), which is not accomplished by the
augmented Lagrangian formulation (2), is expected to sta-
bilize the numerical solution.

The way to enforce the constraints proposed in this sec-
tion is the so-called coordinate projection technique. The
velocities and accelerations coming from the integrator, are
projected onto the constraints manifolds Φ̇ = 0 and Φ̈ = 0
respectively, by means of the following expressions:

(P + ΦT
qkαΦq)q̇ = Pq̇∗ − ΦT

qkαΦt (3)

(P + ΦT
qkαΦq)q̈ = Pq̈∗ − ΦT

qkα(Φ̇qq̇ + Φ̇t) (4)

where P is the projection matrix, q̇∗ and q̈∗ are the veloc-
ities and accelerations coming from the integrator, q̇ and q̈
are the projected velocities and accelerations, and k is a real
constant.

The choice of the projection matrix P is of key impor-
tance, since it determines the numerical stability of the so-
lution. Moreover, a correct choice of this matrix can guar-
antee the unconditional energy-dissipative character of the
projections, which proves to be very efficient for stabilizing
the system.

By a careful choice of the projection matrix P and the
real constant k, it is also possible to equal the LHS of the
linear systems (3) and (4), (P + ΦT

qkαΦq), to the tangent
matrix of the Newton-Raphson iteration for the nonlinear
system (2), matrix which must be factorized only once, thus
saving much time at the projection stage.

IV. Conserving augmented Lagrangian formulation

The point of departure of the approach described in this
section, is the energy-momentum formulation presented in
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[10], [12], [13]. The menctioned energy-momentum for-
mulation, was based on the following penalty equations:

Mq̈ + ΦT
qαΦ = Q (5)

On the other hand, the formulation described in this section,
is based on the equations (2), repeated here for clarity:

Mq̈ + ΦT
qαΦ + ΦT

qλ∗ = Q , λ∗
i+1 = λ∗

i + αΦ (6)

The key point of the conserving approach is the formulation
of the constraint and conservative forces in such a way that
guarantees the algorithmic conservation of the energy,

Mq̈n+1/2+
[

∂Φi

∂qn+βi

]T (
αΦn+1/2 + λ∗) = Qc+(Qnc)n+1/2

(7)

qn+1 = qn + hq̇n+1/2 (8)

q̇n+1 = q̇n + hq̈n+1/2 (9)

λ
∗(i+1)
n+1 = λ

∗(i)
n+1 + αΦn+1/2 (10)

In (7), Qc, and (Qnc) are the contributions of the con-
servative and non-conservative forces to the generalized
forces vector, (·)n+1/2 = [(·)n+1 + (·)n]/2 and (·)n+βi

denotes evaluation at qn+βi , which can be calculated as
qn+βi = qn + βi(qn+1 − qn). All the remaining terms
have the same meaning already explained in the previous
section. In (8) and (9), h is the time-step. To guarantee the
conservative behavior of the constraint forces, the parame-
ter βi ∈ [0, 1] has to be computed for each constraint and at
each time-step, by imposing the following equality,

[
∂Φi

∂qn+βi

]T

(qn+1 − qn) = Φn+1 − Φn (11)

The form of the term Qc depends on the particular expres-
sion of each conservative force, so it is case-dependent and
will not be described here.

The proposed algorithm given by (7), (8), (9) and (10)
achieves exact conservation of the total energy in conser-
vative systems, and exact fulfillment of the position con-
straints.

The formulation proposed in this section has proven to
stabilize the behavior of the original formulation (2), but
using a different strategy than the formulation proposed in
Section III: the control of the energy stored in the conserv-
ative forces (including the constraint forces).

Moreover, it is possible to use the projection strategy de-
scribed in Section III, together with the conserving formu-
lation described here, in order to enforce the constraints at
velocity and acceleration levels.

Fig. 1. Numerical simulation: an spherical compound pendulum.

V. Numerical Simulations I: Spherical compound pen-
dulum

The first problem analyzed is a spherical compound pen-
dulum, Goicolea and Garca Orden (2002), (see Fig.1). The
system is composed of two particles with masses m1 =
m2 = 1kg, placed respectively in the center and end of a
massless rod of total length l1 + l2 with l1 = l2 = 1m.The
pendulum is released from the position ϕ1 = 0, ϕ2 = π/2,
with initial velocities ϕ̇1 = 0.5, ϕ̇2 = 0 The system is
modeled in natural coordinates.

A. Stability problems of the index-3 augmented Lagrangian
with standard integrators

The simulation is carried out for 5 s., based on the for-
mulation (2), and integrated with the trapezoidal rule and a
time-step of 25 ms. The penalty factor chosen is 107.

Fig.2 and Fig.3 show the time history of the norm of the

constraints at velocity level,
∥∥∥Φ̇

∥∥∥, and the total energy re-

spectively. The drift-off effect of the velocity constraints
can be appreciated in Fig.2. In Fig.3, it is observed that
the total energy of the system is significantly affected, and
grows in an uncontrolled manner.

B. Stabilized formulations: coordinate projection vs. con-
serving formulation

The formulations of Sections III and IV are analyzed
here. Those formulations were designed to overcome the
problems shown by the augmented Lagrangian formulation,
explained in the Section V-A.

Fig.4 and Fig.5 show, as expected, that the scheme with
coordinate projections fulfills better the constraints at ve-
locity and acceleration levels. Fig.6 shows that the con-
serving scheme achieves the exact conservation of the total
energy.

The important point is that both schemes provide an ad-
equate stabilization of the equations (2).
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Fig. 4. Constraints derivative behavior.
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Fig. 5. Constraints second derivative behavior.
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Fig. 6. Total energy behavior.

VI. Numerical Simulations II: The Iltis vehicle

As a good complex and realistic example to test meth-
ods for demanding real-time multibody applications, the
full model of the Iltis vehicle [15], illustrated in Fig.7, and
used as a benchmark problem to check multibody dynamic
codes, has been chosen. The simulation which has served
to compare the different methods, consists of 8 s. of motion
with the vehicle going up an inclined ramp and then down a
series of stairs, starting at a horizontal speed of 5 m/s (the
road profile is shown in Fig.8). A rather violent motion is
undergone by the vehicle, reaching acceleration peaks of up
to 5 g.

A. Coordinate projection vs. conserving formulation

Several analyses were performed with the formulations
of Section III and Section IV, using different time-steps.
Fig.9 shows the response of both formulations with a time-
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Fig. 7. Iltis vehicle.
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Fig. 8. Road profile.

step of 10 ms.
The augmented Lagrangian formulation with projections

(Section III), used with a standard integrator, the trape-
zoidal rule, and is capable of solving this violent maneuver
providing a good solution (Fig.9).

On the other hand, the conserving formulation (Section
IV) fails to solve the same maneuver with any time-step.
The method is not stable enough to achieve convergence
when the maneuver becomes violent, and it cannot pass
through the first impact of the front wheels with the stairs,
so that it only provides a solution for the first 4 s. of the
simulation (Fig.9).
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Fig. 9. Projections and trapezoidal rule vs. conserving. h = 0.01s

B. Combination of both stabilizing strategies

It was noted in Section VI-B that the conserving formu-
lation cannot integrate the motion of the Iltis vehicle with
the road profile shown in Fig.8.

Moreover, it was pointed out in Section IV, that the pro-
jection strategy is compatible with the conserving formula-
tion. The resulting scheme brings together two different
ways of stabilizing the augmented Lagrangian equations
(2): keeping the energy of the system bounded, and keeping
the solution onto the constraints manifold.
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Fig. 10. Projections and trapezoidal rule vs. projections + conserving.
h = 0.01s

With this combined scheme of conserving formulation
and projections, it is possible to solve the motion of the
Iltis vehicle with a higher precision than that given by the
trapezoidal rule with projections, for the same time-step.

Fig.10 shows that the trapezoidal rule prolongs the pe-
riod of the solution in comparison whit the conserving for-
mulation. This effect is even more apparent with bigger
time-steps. This circumstance make possible to get accept-
able solutions for higher time-steps, if the conserving aug-
mented Lagrangian scheme with projections is used.

VII. Conclusions

Two different methods to integrate the equations of con-
strained multibody systems have been described, both of
them based on an augmented Lagrangian formulation. The
formulations described, use two different strategies to sta-
bilize the numerical behavior: one strategy is based on
the projection of velocities and accelerations onto the con-
straints manifolds, and the other one on a specialized inte-
grator which exactly conserves the energy for conservative
systems. The conserving formulation shows a very good
behavior, especially in long term simulations of conserva-
tive systems, for which the conservation is very important.
The trapezoidal rule with projections shows a very robust
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behavior along with an acceptable precision. The formu-
lation is not as adequate as the previous one for long term
simulations of conservative systems, but it is a good candi-
date for demanding real-time simulations, due to its high ro-
bustness. The combination of the conserving scheme with
the coordinate projection technique results in an algorithm
which brings together the advantages of both strategies, and
it can be a good candidate for real-time simulations.
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