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Abstract. This work is part of a project aimed to develop real-time observers based on 
detailed multibody models and the extended Kalman filter (EKF). Detailed models can 
provide more and more accurate information than the simple models traditionally used to 
build observers, thus enabling the implementation of more sophisticated control strategies. In 
a previous work, the authors studied different multibody dynamics formulations, and 
concluded that the state-space reduction method known as matrix-R was the most suitable for 
this application. This second work is devoted to study the influence of the sensored magnitude 
in the performance of the observers. Although the final objective is to address complex 
industrial systems, preliminary studies are being carried out on a four-bar mechanism with a 
spring-damper element. The behavior of the matrix-R method has been analyzed for different 
sensored magnitudes -position, velocity, acceleration-, and for the cases when the sensored 
magnitude is or is not a generalized coordinate of the problem. The conclusion is that good 
results can be obtained in all the cases, provided the covariance of the measurement noise is 
adjusted to a suitable value. 
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1 INTRODUCTION 
Observers serve to estimate the states of a dynamic system based on a model and on some 

measurements of the system [1]. In this way, they provide estimates of magnitudes which 
have not been sensored because it would be either expensive or practically difficult. In many 
cases, observers must run in real-time, since the information they provide is used to control 
the actual system. 

Usually, the system models are simple, even linear, since their fast evaluation is needed in 
order to meet the above mentioned real-time requirement. However, detailed models would 
provide more and more accurate information, thus enabling the implementation of more 
sophisticated control strategies. 

This work is part of a project aimed to develop real-time observers based on detailed 
multibody models and the extended Kalman filter (EKF). Although the objective is to address 
complex industrial systems, preliminary studies are being carried out on a four-bar 
mechanism with a spring-damper element. 

In a previous work [2], the authors selected the two dynamic formulations which were 
found to better fit the structure required by the EKF, and compared them: a state-space 
reduction method known as matrix-R method, and a penalty method. It was concluded that the 
matrix-R method was faster and more accurate than its counterpart. The penalty method was 
not able to keep constraint satisfaction, since an increment of the penalty factor increased both 
the penalty forces which oppose constraint violation and the correction terms coming from the 
EKF. Therefore, the kinematic position and velocity problems had to be solved at every 
function evaluation, thus limiting the efficiency of the method and its typical advantages: 
validity of the set of variables during the whole simulation, even in case of changing 
configurations, and robustness when facing singular positions. 

This second work is devoted to study the influence of the sensored magnitude in the 
performance of the observers. In the above-mentioned first work, a position sensor had been 
considered which measured the value of the generalized coordinate. Here, the behavior of the 
matrix-R method has been analyzed for different sensored magnitudes -position, velocity, 
acceleration-, and for the cases when the sensored magnitude is or is not a generalized 
coordinate of the problem. 

2 THE OBSERVER BASED ON THE MATRIX-R METHOD AND THE EKF 
Consider the nonlinear system (plant) given by: 

( )
( )

= +

= +

x f x δ

y h x ε
 (1)

where x is the (unknown) state vector, and y is the known measurements vector. The 
functions f and h are also known, and the equations are affected by state and measurement 
noises δ, ε, with zero mean and given covariances Θ, Ξ, respectively. Then, the EKF is given 
by [3]: 
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being the matrices A, C, computed as the Jacobians of f and h with respect to the states, and 
evaluated at the estimated trajectory. The EKF locally minimizes the covariance P of the 
state-estimation error. 

In its most basic form, the dynamics of a multibody system is described by the constrained 
Lagrangian equations: 

T+ =

=
qMq Φ λ Q

Φ 0
 (3)

where M is the positive semidefinite mass matrix, q  the accelerations vector, Φ the 
constraints vector, qΦ  the Jacobian matrix of the constraints, λ the Lagrange multipliers 
vector, and Q the applied forces vector. Eq. (1) represents a system of differential-algebraic 
equations (DAE). 

The main idea of the matrix-R method [4] is to obtain a system of ordinary differential 
equations (ODE) with dimension in  equal to the actual number of degrees of freedom, using a 
set z of independent coordinates. The starting point is to establish the following relation 
between velocities: 

=q Rz  (4)

where q are all the dn  dependent variables and z is a set of in  independent variables. Such a 
relation can always be found, for instance, taking the derivative of the constraints, =qΦ q 0 , 
and splitting all the velocities in two subsets, so that one subset of velocities may be written as 
a function of the other subset. Once Eq. (4) is obtained, it follows that 

= +q Rz Rz  (5)

Going back to Eq. (3), premultiplying by the transpose of R, and having in mind 
that =qΦ R 0 ,  

( ) ( )1T T 1− −⎡ ⎤= − =⎣ ⎦z R MR R Q MRz M Q  (6)

which defines the projected mass matrix M  and the projected vector of generalized forces Q . 
The result is that the DAE of Eq. (3) in the dependent variables has been converted into the 
ODE of Eq. (6) expressed in independent variables. 

If now the states are defined as { }T T T=x z w , with =w z , the following equations can be 
written,  

( ) ( )1T T 1− −

=

⎡ ⎤= − =⎣ ⎦

z w

w R MR R Q MRw M Q
 (7)

or, more compactly, 

1      ( )−

⎧ ⎫ ⎧ ⎫
= ⇒ =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

z w
x f x

w M Q
 (8)

These equations perfectly match the first set of Eq. (1) and, therefore, the EKF of Eq. (2) 
can be straightforwardly applied. In particular, the state-space matrix is obtained as the 
linearization:  
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which can be approximated as, 
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where K is the stiffness matrix and C is the damping matrix. 
In this case, the size of the problem is 2 in . Now, according to Eq. (2), the correction 

provided by the EKF must be included into the observer equations,  

( )
( )2

− + − =

− + − =
1 s

s

z w y y 0

Mw Q M y y 0

K

K
 (11)

where 1K  and 2K  are the upper and lower parts of the Kalman gain matrix K, and sy  are the 
outputs provided by the sensors. 

Since real-time performance of the algorithms will be required by the final applications, 
the integration procedure is relevant in order to make the algorithm as efficient as possible. 
The implicit single-step trapezoidal rule has been selected as integrator,  
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Now, Eq. (12) can be substituted into Eq. (11), thus leading to the nonlinear system of 
equations in the states,  

1
1

2 1

( )
      ( )

( )
n

n
n

+
+

+

=⎧
⇒ =⎨ =⎩

1g x 0
g x 0

g x 0
 (13)

This system can be iteratively solved by the Newton-Raphson iteration, the approximated 
tangent matrix being,  
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where 1C  and 2C  are the upper and lower parts of the output Jacobian matrix C. 
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3 THE EXAMPLE 
The four-bar mechanism with a spring-damper element shown in Fig. (1) is chosen as 

example. Two computational versions of the mechanism are created: the first one represents 
the real “prototype”, while the second one plays the role of the “model”. In order to test the 
observer, the model is not an exact replica of the prototype, but differs in some physical or 
geometric parameters; also, the readings coming from sensors and actuators may be altered 
when passed to the model. The objective is that the model follows the motion of the prototype 
with the help of the EKF corrections. 

 
Figure 1: Four-bar mechanism with spring-damper element. 

The following set of dependent variables, whose meaning is illustrated in Fig. (2), is used 
to model the mechanism: 

{ }T
1 1 2 2x y x y s θ=q  (15)

 
Figure 2: Modeling of the example. 

The independent variable describing the single degree-of-freedom of the system is the 
angle between the horizontal and the link B1, 

{ }T θ=z  (16)

The inertial matrix of the whole mechanism is computed by considering the contributions 
of the three 2D bars [4] and the null contribution of the spring-damper element (of negligible 
mass): 
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The generalized force vector is obtained by considering the gravity that acts over each bar 
and the action of the spring-damper element, thus resulting [4]: 
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where k is the elastic constant, c the damping coefficient and 0s  the natural spring length. 
Finally, the constraints vector is: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
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Φ  (19)

The numerical values of the parameters are: masses 1Bm =2 kg, 2Bm =25 kg, 3Bm =2 kg; bar 
lengths 1BL =0.9 m, 2BL =1 m, 3BL =1.05 m; natural spring length 0s =1.4 m; fixed points 
Cartesian coordinates A=(0,0), B=(0,−1); spring coefficient k=10000 N/m, and damping 
coefficient c=500 Ns/m. 

As said at the beginning of the section, two versions of the mechanism are created, the 
“prototype” and the “model”, whose differences are: to show the recovery from different 
initial conditions, the real prototype starts at s=1.80 m, while the observer starts at s=1.85 m; 
to evaluate the effect of noise in measurements, a uniformly distributed sensor noise of 10% 
of the RMS value of the corresponding signal is considered; finally, in order to check the 
effect of uncertain exogenous forces, the prototype runs under normal gravity, g=9.81 m/s2, 
but the observer runs under g=8.81 m/s2. Both the prototype and the observer (model with 
EKF corrections) are simulated for a total time of 1 s. 
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Based on the experience obtained with the same example in the previous work [2], the 
EKF parameters are set as follows: covariance of the state noise, Θ=diag(10); covariance of 
the state estimation error, P(0)=diag(diag(0.1),diag(0)). The covariance of the measurement 
noise, Ξ, must be adjusted depending on the sensored magnitude. 

4 THE INVESTIGATION 
The investigation is organized as follows. To begin with, two main monitoring options 

have been considered: in the first one, the sensor measures the angle between the horizontal 
and the link B1, called θ; in the second one, the sensor measures the vertical coordinate of 
point 1, called 1y . 

For each option, the sensored magnitude may be the position, velocity or acceleration of 
the corresponding variable, i.e. the possible sensored quantities are θ , θ , θ  for the first 
option, and 1y , 1y , 1y  for the second option. It should be pointed out that, since angle θ  is the 
generalized coordinate of the problem, as indicated in Eq. (16), simpler expressions are 
obtained for the Jacobian C (see Eq. (1-2)) when θ  or its derivatives are measured. In fact, if 
θ  or θ  are the sensored quantities, C is constant. 

Table 1 shows the different cases analyzed, and the value of the Jacobian of the 
measurements function, C, for each of them. To interpret the table according to the 
formulation described in Section 2, it should be taken into account that z θ= , w θ= , w θ= , 
and the form of the scalar terms 21A , 22A  is obtained from Eq. (10). 

 

Sensor
( )∂

∂
h x

x
C=   

θ   [ ]1 0  

θ   [ ]0 1   

θ   [ ]21 22A A   

1y   [ ]1 cos 0BL θ   

1y  1 sin cosBL θ θ θ⎡ ⎤−⎣ ⎦  

1y  2
1 21 22sin cos cos cos 2 sinBL θ θ θ θ θ θ θ θ⎡ ⎤− + − −⎣ ⎦A A  

Table 1: The different cases analyzed, and their C matrices. 

Apart from what has been described above, two additional options have been considered in 
the study. 

On the one hand, it has been supposed that the sensor at point 1 provides the measured 
values in local coordinates, as sensors usually do. Only two cases are meaningful within this 
approach, corresponding to the measurement of 1y  and 1y , respectively. However, in such 
cases the Jacobians of the measurement functions are [ ]1 0 1BLC=  and [ ]1 21 22BL A AC= , 
which show to be proportional to the second and third cases in Table 1 and, therefore, don’t 
represent a real new alternative to the cases already proposed. 

On the other hand, the information coming from a sensor can be integrated, thus simulating 
a sensor of lower derivative. Following this idea, the cases of single integration of velocities 
and accelerations to get positions and velocities, respectively, and of double integration of 
accelerations to get positions, have been included in the study too. Of course, the 
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corresponding Jacobians of the measurement functions, C, are again the same that those 
appearing in Table 1. The trapezoidal rule has been used to integrate the sensor data. 

5 RESULTS AND DISCUSSION 
For each case of those described in the previous section, the simulation of the prototype is 

first run, and the corresponding readings from the sensor stored. Then, the simulation of the 
model is launched, getting the stored readings of the prototype’s sensor in order to calculate 
the EKF corrections. Each case is simulated for two fixed time-steps of integration, Δt=1 ms 
and Δt=10 ms. For each simulation, the covariance of the measurement noise, Ξ=diag(r), is 
adjusted so as to provide the best possible behavior of the observer, and CPU-time and error 
are obtained as results. In order to evaluate the error, the history of coordinate 1x  is stored for 
both the prototype and the observer, and the norm of the difference vector calculated in 101 
points equally spaced in the interval of simulation is obtained, 

( )
101 2

1, 1,
1

i i
prot obs

i

e x x
=

= −∑  (20)

The results for the cases shown in Table 1 are gathered in Table 2. 
 

Δt=1 ms Δt=10 ms Sensor RMS 
r CPU-time (s) e (m) r CPU-time (s) e (m) 

θ  0.220 0.01 1.37 0.1669 0.01 0.16 0.1728 
θ  2.049 0.01 1.38 0.2331 0.1 0.17 0.2708 
θ  24.06 100 2.82 0.2505 100 0.34 0.2566 

1y  0.187 0.01 1.37 0.2039 0.01 0.16 0.2040 
1y  1.748 0.01 1.40 0.2835 0.1 0.17 0.3047 
1y  20.61 1000 1.91 0.2971 1000 0.23 0.2974 

Table 2: Results for direct use of sensor measurement. 

Now, the cases in which the sensor measurement is integrated once or twice in order to get 
lower derivatives are shown in Table 3. 

 
Δt=1 ms Δt=10 ms Original 

sensor 
# of 

integr. 
Equivalent 

sensor r CPU-time (s) e (m) r CPU-time (s) e (m) 
θ  1 θ  0.01 1.23 0.1672 0.01 0.15 0.1712
θ  2 θ  0.01 1.25 0.1671 0.01 0.14 0.1708
θ  1 θ  0.01 1.28 0.2355 0.1 0.14 0.2662

1y  1 1y  0.01 1.25 0.2033 0.01 0.14 0.2044
1y  2 1y  0.01 1.23 0.2031 0.01 0.14 0.2051
1y  1 1y  0.01 1.27 0.2811 0.1 0.14 0.3015

Table 3: Results for integrated sensor measurement. 

To let the reader appraise the meaning of the errors gathered in Tables 2 and 3, Figure 3 
shows the histories of coordinate 1x  and its derivative 1x  for the prototype and the observer, 
for the cases with minimum and maximum error, respectively. 
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Figure 3: Histories of 1x  and 1x  for prototype and observer: min error (0.1669) and max error (0.3047). 

At the view of the results, it can be affirmed that the observer achieves to follow the 
prototype in all the cases, not only with the moderate time-step size of 1 ms, but also with the 
large time-step size of 10 ms. Therefore, good robustness properties have been obtained. 

It is also clear that measuring velocities or accelerations leads to greater errors than 
measuring positions. Moreover, when acceleration sensors are used, the efficiency is notably 
reduced, and a huge increment of the covariance of the measurement noise is required in order 
to keep the stability of the observer. 

In what respects to the type of variable measured, better results are obtained when the 
measured magnitude is the generalized coordinate of the problem, since the output Jacobian 
matrix C is more exact in that case. 

Integration of the measured data to yield lower derivatives has shown to produce excellent 
results. Single integration of velocities or accelerations to get positions or velocities keeps the 
same error that the direct use of position or velocity sensors, respectively, and improves 
efficiency. The same trend is observed when accelerations are integrated twice to give 
positions. This behavior is attributed to the filtering effect caused by the trapezoidal rule 
during the integration process, which attenuates the noise level of the signal. 

6 CONCLUSIONS  
In this work, the influence of the sensored magnitude in the performance of the observers 

based on detailed multibody models and the extended Kalman filter has been studied. A four-
bar mechanism has been chosen as example. Two computational versions of the mechanism 
have been created, the real “prototype” and the “model”, each one having different initial 
conditions and gravity value. Moreover, signals coming from the prototype sensors have been 
corrupted by a random noise. The behavior of the developed formalism, which relies on the 
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state-space reduction method known as matrix-R, has been analyzed for different sensored 
magnitudes -position, velocity, acceleration-, and for the cases when the sensored magnitude 
is or is not a generalized coordinate of the problem. 

Based on the obtained results, the following conclusions can be drawn: 

• The observer becomes less stable, accurate and efficient as higher derivatives are 
measured, thus demanding either to reduce the integration time-step or to increase the 
value of the measurement noise covariance in order to keep an acceptable behaviour. 

• Anyway, the observer was able to deliver good results for time-steps as large as 10 ms in 
all the cases.  

• The observer is less accurate if the sensored variable is not a generalized coordinate of 
the problem, since the output Jacobian matrix is less exact in that case. 

• Integration of the sensor data to simulate the measurement of a lower derivative yields 
excellent results, likely due to the filtering effect of the integration process. 

Therefore, it is expected that robust, efficient and accurate observers can be obtained for 
complex industrial systems, like cars, by combination of detailed multibody models and the 
extended Kalman filter. Such a study will be the subject of future research. 
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