
 1 Copyright © 2009 by ASME

Proceedings of the ASME 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2009
August 30 - September 2, 2009, San Diego, California, USA

 DETC2009-86653

WEAK COUPLING OF MULTIBODY DYNAMICS AND BLOCK DIAGRAM SIMULATION TOOLS

Francisco González* Manuel González Javier Cuadrado
Escuela Politécnica Superior, Universidad de A Coruña

Mendizábal s/n, Ferrol, A Coruña, Spain

* PhD student and corresponding author, Phone: (+34) 981337400 ext. 3870, Fax: (+34) 981337410, Email: fgonzalez@udc.es

ABSTRACT
Dynamic simulation of complex mechatronic systems can

be carried out in an efficient and modular way making use of
weakly coupled co-simulation setups. When using this
approach, multirate methods are often needed to improve the
efficiency, since the physical components of the system usually
have different frequencies and time scales. However, most
multirate methods have been designed for strongly coupled
setups, and their application in weakly coupled co-simulations
is not straightforward due to the limitations enforced by the
commercial simulation tools used for mechatronics design.

This work describes a weakly coupled multirate method
applied to combine a block diagram simulator (Simulink) with
a multibody dynamics simulator in a co-simulation setup. A
double-mass triple-spring system with known analytical
solution is used as test problem in order to investigate the
behavior of the method as a function of the frequency ratio
(FR) of the coupled subsystems. Several synchronization
schemes (fastest-first and slowest-first) and
interpolation/extrapolation methods (polynomials of different
order and smoothing) have been tested.

Results show that the slowest-first methods deliver the best
results, combined with a cubic interpolation (for FR < 25) or
without interpolation (for 25 < FR < 50). For FR > 50, none of
the tested methods can deliver precise results, although
smoothing techniques can reduce interpolation errors for
certain situations.

1 INTRODUCTION

Modern complex mechatronic systems are made up of
multi-domain components of different nature. An automobile is
a very representative example of these kinds of systems,
involving mechanical components (chassis, suspensions,
steering mechanism, powertrain), active control devices (Anti-
lock Braking System, Electronic Stability Control, traction
control), hydraulic devices (brake circuit) and power sources

(internal combustion engine or electric motors). Due to the
increasing demand of quality and performance, the traditional
design approach based on a sequential design of the
components can no longer be applied to such systems:
engineers need to model and simulate the dynamic response of
the whole system, taking into account the simultaneous
interaction phenomena between components.

The modeling of complex mechatronic systems can be
accomplished by two different strategies: strongly coupled and
weakly coupled. On one hand, the strongly coupled strategy
assembles the dynamic equations of each subsystem into a
monolithic set of equations, which can be numerically
integrated in a single environment. On the other hand, the
weakly coupled strategy does not assemble the equations: their
numerical integration is performed in parallel by several
interconnected environments that exchange information during
the integration process, working in a co-simulation
configuration. A review about both strategies is provided in
[1].

The weakly coupled strategy has important advantages
over the strongly coupled one: specialized modeling and
simulation tools, familiar to experts in the corresponding field,
can be applied to each component. In addition, component
models can be modified with minor impact on other
components, which results in a better modularity of the whole
model. For example, control and hydraulic devices are usually
modeled and simulated in general-purpose block diagram
simulators like Matlab/Simulink from Mathworks [2],
MATRIXx/SystemBuild from National Instruments [3] or the
free open source tool Scilab/Scicos from INRIA [4].
Conversely, the behavior of complex mechanical components
is better modeled and simulated in specialized tools for
multibody system dynamics like MSC.Adams [5], Simpack [6]
or Recurdyn [7]; these tools also provide interfaces with the
aforementioned block diagram simulators, which simplify the
set up of weakly coupled simulations. Representative examples

 2 Copyright © 2009 by ASME

of these kinds of co-simulation setups are given in [8] and [9],
where the authors combine a multibody system simulation
package (ADAMS and Simpack, respectively) with a block
diagram simulator (Simulink) to model a full vehicle equipped
with electronic control devices.

Another important feature of complex mechatronic
systems, derived from their multi-domain nature, is the
presence of different time scales, which results in widely
different dynamic response characteristics in terms of
frequencies. For example, mechanical components have slow
frequency responses compared to fast electronic components.
The computational efficiency of dynamic simulations of
complex mechatronic systems is quite important, because these
models are often used in optimization processes (where each
function evaluation involves a complete dynamic simulation) or
hardware-in-the-loop settings (where the dynamic simulation
must run in real-time). In order to make the numerical
integration of the dynamic equations of the whole system as
efficient as possible, each component should be integrated with
a stepsize adapted to its time scale. This procedure is known as
multirate integration.

Research on multirate integration methods for ordinary
differential equations (ODE) has been carried out since the late
1970s [10]. The basic idea is to employ two (or more) time
grids: a coarse one for the slow components, and a refined one
for the fast components; the coupled terms in the slow and fast
equation sets are estimated by means of extrapolation or
interpolation methods. Many contributions to this subject have
been proposed, including advanced techniques like dynamic
partitioning of equations with automatic identification of fast
and slow components during the integration [11], self-adjusting
multirate time stepping strategies [12] and stability analysis of
the proposed methods [13].

The application of existing multirate integration methods
to mechatronic models obtained by the strongly coupled
strategy is straightforward, since they are precisely designed to
work on a monolithic set of equations with full control on the
integration process. However, if the mechatronic system is
modeled according to the weakly coupled strategy, these
multirate integration methods cannot be applied directly due to
their particular features:

(a) They introduce modifications in the integration
schemes, something that is not possible in commercial off-the-
shelf modeling and simulation tools used for weakly coupled
co-simulation. For example, the aforementioned block diagram
simulators and multibody system simulation packages offer
their own set of integration schemes that cannot be modified.

(b) They assume that the coarse and refined time-grids are
equidistant and synchronized, which means that the large
stepsize H is a multiple of the small stepsize h. This condition
cannot be guarantied in weakly coupled co-simulations if one
or more subsystems are integrated with a variable stepsize
integrator, since the stepsize control algorithms of the different
simulation environments cannot be synchronized.

(c) They mitigate the unstable behavior caused by the
explicit extrapolation of some equation terms by introducing
implicit schemes, which involve some kind of iterative
process. Again, commercial off-the-shelf simulation tools like
block diagram simulators do not allow this kind of iteration
with other simulation tools.

Due to these impediments, commercial state-of-the-art
simulation environments used in the mechatronics industry do
not yet provide tools to enable multirate integration when they
are used in weakly coupled co-simulation setups. Two
examples of this situation are provided: the first one is
veDYNA [14], a real-time vehicle dynamics simulation
environment very popular in the automotive industry, which is
based on Matlab/Simulink. veDYNA works as an external
simulation tool embedded in Simulink, and provides a library
of mechanical elements to model any kind of vehicle. Non
mechanical elements, like electronic and control devices, are
modeled in Simulink as usual, exchanging input and output
data with the mechanical model. veDYNA uses an internal
semi-implicit fixed-step Euler integration scheme to solve the
equations of motion of the vehicle, and requires that the
Simulink integration must be performed with the ode1
integrator (explicit fixed-step Euler’s method) in order to
properly synchronize both integrations. This requirement is a
strong drawback, since Simulink’s ode1 integration scheme is
not suited at all in many situations. Another example of the
limitations of currently available simulation environments is
SIMAT, the interface provided by the multibody simulation
software Simpack to perform co-simulation with Simulink [6].
SIMAT works as a Simulink block that exchanges data
between the Simpack model and the Simulink model during the
integration. However, its current implementation only allows
fixed stepsize integrators with the same stepsize in both
simulation environments. The same constraint applies to other
packages for multibody system simulation, like ADAMS,
which provide interfaces for performing co-simulation with
block diagram simulators: none of them support multirate
integration.

Research is being carried to introduce multirate methods
in weakly coupled co-simulation environments, principally in
those which combine general-purpose block diagram
simulators with external specialized simulation tools, a
common setup in the industry. Busch et al [15] have tested
several approaches to improve the aforementioned Simpack’s
SIMAT interface to support variable stepsizes in both sides of
the co-simulation environment; in a similar way, Oberschelp
and Vöcking [16] have investigated the behavior of some
multirate techniques in weakly coupled co-simulations.
However, these works apply multirate methods to solve a
particular mechatronic model, and therefore their conclusions
cannot be generalized nor extrapolated to other cases.

The goal of this work is to gain insight into the behavior
and performance of multirate methods in weakly coupled co-
simulations environments. To achieve this, the first
contribution of this paper is an algorithm to implement a

 3 Copyright © 2009 by ASME

general multirate method (i.e., not constrained to synchronized
time grids or a particular integration scheme) able to couple
block diagram simulators with external simulation tools, like
multibody simulation packages. The proposed algorithm can be
configured to work in different modes and to use different
interpolation and extrapolation methods. The second
contribution of this paper is to study the accuracy of these
coupling techniques in problems of different characteristics, in
order to obtain general conclusions about the applicability of
multirate methods in weakly coupled co-simulations based on
block diagram simulators.

The remaining of the paper is organized as follows:
Section 2 describes the methods used to carry out the research:
a test problem and the algorithms to implement a general
multirate method in a block diagram simulator. Section 3
presents and discusses the results of numerical experiments.
Finally, Section 4 provides conclusions and areas of future
work.

2 METHODS

A test problem involving two subsystems with fast and
slow dynamic responses will be solved by coupling a block
diagram simulation tool (to integrate the fast subsystem) with
an external software for multibody system simulation (to
integrate the slow subsystem). The parameters of the test
problem will be adjusted to generate a range of co-simulation
situations, which will be used to test different coupling
strategies in terms of precision.

Figure 1: test problem.

2.1 Test problem
The double-mass triple-spring system shown in Figure 1

has been selected as test problem. It is made up of two
subsystems represented by masses m1 and m2, which are
coupled by the spring k2. This simple, two degree-of-freedom
system presents the advantage of having a known analytical
solution for its dynamic response, which can be used as a
reference in order to measure the accuracy of the coupled
multirate numerical integration carried out by any co-
simulation scheme. The dynamics of the test problem is
governed by Equation (1):

1 2 21 1 1

2 2 32 2 2

0 0
0 0

k k km x x
k k km x x
+ −⎛ ⎞⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫

+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎜ ⎟ − + ⎩ ⎭⎝ ⎠⎩ ⎭ ⎩ ⎭⎝ ⎠
 (1)

where x1 and x2 measure the horizontal displacement of the
masses from their equilibrium position. Equation (1) is a simple
second order differential equation whose analytical solution is
given by

() () () () ()
() () () () ()

1 11 1 12 1 13 2 14 2

2 21 1 22 1 23 2 24 2

·cos ·sin ·cos ·sin
·cos ·sin ·cos ·sin

x t C t C t C t C t
x t C t C t C t C t

ω ω ω ω
ω ω ω ω

= + + +
= + + +

 (2)
where ω1 and ω2 are the natural frequencies of the two
vibration modes of the system, and the terms Cij are constants
that define the amplitude of the vibration. In order to simplify
the problem, sinus terms in Equation (2) are removed by
setting the initial velocities to zero:

() () ()
() () ()

1 11 1 13 2

2 21 1 23 2

·cos ·cos
·cos ·cos

x t C t C t
x t C t C t

ω ω
ω ω

= +
= +

 (3)

The dynamic response shown in Equation (3) is a function
of six independent parameters (ω1, ω2, C11, C13, C21, and C23)
For the purposes of this study, two of them are set to fixed
values in Equation (4), and the rest are presented in a more
suitable form in Equation (5):

1

11

1 Hz
1 mC

ω =
=

 (4)

1 2

12 11 23

1 11 13

2 23 21

/
/

/
/

FR
AR C C
AR C C
AR C C

ω ω=
=
=
=

 (5)

From here on, frequencies ω1 and ω2 will be identified
respectively with the primary frequencies of masses m1 (fast
subsystem) and m2 (slow subsystem), assuming ω1>ω2,
C11>C13 and C23>C21. The ratios defined in Equation (5) are
interpreted as follows:
• The frequency ratio FR measures how fast the fast

subsystem m1 is, compared with the slow subsystem m2.
• The amplitude ratio AR12 compares the primary amplitudes

of both subsystems (C11 for m1 and C23 for m2).
• The amplitude ratios AR1 and AR2 measure how much the

dynamic response of each subsystem is affected by the
other subsystem.
Numerical experiments performed in Section 3 will use

different sets of values for the ratios defined in Equation (5), in
order to reproduce diverse co-simulation situations. As
example, Figure 2 shows the dynamic response of x1 for FR =
30, AR12 = 0.1, AR1 = 0.1 and AR2 = -1000.

0 50 100
-10

0

10

Time (s)

Po
sit

io
n

(m
)

Figure 2: dynamic response of x1.

After solving the dynamics of the problem in analytical
form, the final step is to find the physical parameters of the
system (m1, m2, k1, k2, k3) and the initial conditions x1(t = 0)

 4 Copyright © 2009 by ASME

and x2(t = 0) as a function of the response parameters defined in
Equations (4) and (5). The resulting expressions will allow
adjusting the physical parameters of the test problem in order to
generate any desired dynamic response in its two subsystems.
Note that the five aforementioned physical parameters can be
scaled by the same factor without changing the dynamic
response of the system, and therefore one of them must be
fixed in advance. The selection of k2 as fixed parameter greatly
simplifies the mathematical manipulations:

2 1 N/mk = (6)
The remaining physical parameters can be obtained from

the eigenvalue equation:
()2ω− =K M A 0 (7)

where A is the matrix of modal amplitudes of the system, K
and M are the stiffness and mass matrices shown in Equation
(1) and ω stands for the natural frequencies of the system. The
characteristic polynomial of the eigenvalue equation leads to a
biquadratic equation in ω:

() ()()
()()

4 2
1 2 2 1 2 1 2 3

2
1 2 2 3 2 0

m m m k k m k k

k k k k k

ω ω− + + + +

+ + + − =
 (8)

which can be analytically solved, giving two equations of the
form

()1 2 1 2 3, , , ,f m m k k kω = (9)
Two more equations can be obtained by substituting the

solution given in Equation (3) in the equations of motion given
by Equation (1); as each mode of vibration must satisfy the
equations of motion, they lead to:

2
23 1 211 2

2
21 212 1 1

2
13 23 2 22

2
23 212 2 1

k mC k
C kk m

C k mk
C kk m

ω
ω

ω
ω

−
= =

−

−
= =

−

 (10)

Equations (9) and (10) form a set of four equations whose
solution is expressed using the intermediate parameters a and b:

11 21

13 23

/
/

a C C
b C C
=
=

 (11)

()1 22 2
1 2

()a bm k
ab ω ω

−
=

−
 (12)

()
()2 22 2

1 2

ab b a
m k

ab ω ω
−

=
−

 (13)

() ()
()

2 2
1 2

1 22 2
1 2

1 1a b b a
k k

ab
ω ω
ω ω

− + −
=

−
 (14)

() ()()
()

2 2
1 2

3 22 2
1 2

1 1ab b a
k k

ab

ω ω

ω ω

− − −
=

−
 (15)

Finally, initial positions can be easily obtained from
Equations (3) and (4):

() ()

() ()
() ()

11 13 1
1 11 13 11

11 13 1

23 21 2
2 21 23 11

11 23 23 21 12 2

1 / 1
0 ·

/
1 / 1

0
/ · / ·

C C AR
x C C C

C C AR
C C AR

x C C C
C C C C AR AR

+ +
= + = =

+ +
= + = =

 (16)
Equations (11) to (16) provide the values for physical

parameters and initial conditions that generate the desired
dynamic response of the test problem, described by the
parameters in Equation (5). The range of validity of these
expressions is limited by the fact that the physical parameters
(m1, m2, k1, k2, k3) must be positive. This constraint limits the
values of the parameters defined in Equation (5) within the
following limits:

1 2

12 1

12 2

1 2

12 1

12 2

· 0
1 / 0

· 0

· 0
1 / 0

· 0

AR AR
FR AR AR

AR AR

AR AR
FR AR AR

AR AR

<⎧
⎪< ⇒ <⎨
⎪ >⎩

<⎧
⎪> ⇒ >⎨
⎪ <⎩

 (17)

2

12 2

2
1

1FRAR
FR AR
AR

−
>
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 (18)

2

1 2
12 12

1
·

·
1

FR
AR AR

AR AR
FR

−
<

−
 (19)

2.2 Modeling approach
The proposed test problem is modeled using a weakly

coupled co-simulation scheme that combines a general-purpose
block diagram simulator with a multibody simulation software,
a very common setup in the design and development of
mechatronic systems. Simulink [2] has been selected as block
diagram simulator, since it is a well-known tool in this field.
However, the building blocks and modeling procedures
employed in Simulink are also available in other block diagram
simulators like SystemBuild and Scicos, and therefore the co-
simulation techniques presented in this section are not
particular to Simulink and can be implemented in other tools in
a straightforward way. The multibody simulation software is a
C++ in-house developed code.

The block diagram model is shown in Figure 3: the
dynamics of m1 (integrated by Simulink) is modeled in the
upper part of the figure, where its acceleration goes through a
double integration to obtain its position. On the other hand, the
numerical integration of the dynamics of m2 is performed in
the external multibody simulation package embedded in the
block named cosimulation interface located at the bottom of
the figure. This block (of type S-Function in Simulink,
UserCode block in SystemBuild or C/Fortran block in Scicos)

 5 Copyright © 2009 by ASME

contains a user function that evaluates the position and velocity
of m2 from the position and velocity of m1. The design and
behavior of this block will be described in the following
subsection. Since the proposed test problem has no damping,
the velocities are not needed to evaluate the equation terms, but
they are represented in Figure 3 for the sake of generality.

S-function

-C-

-C-

x2

x1
x1_dd

1
s

xo

1
s

xo

()()1 1 1 2 1 2 1/x k x k x x m= + −

1
x

1
x

1
x

2
x

1
x

1
x

1
x

1
s 1

s()1
0x

()1
0x

Cosimulation
interface

t

2
x

2
x Clock

Figure 3: Simulink model of the test problem.

2.3 Coupling strategies for multirate integration
As explained in the Introduction, simulation environments

used in weakly coupled co-simulations implement their own set
of integration schemes that cannot be modified. Therefore, our
purpose is to implement a coupling scheme that enables a
multirate integration of m1 and m2 independently of the
integration schemes and time-steps. In the proposed coupling
scheme, the block diagram simulator acts as master integrator,
since it is responsible of starting and stopping the numerical
simulation. On the other hand, the external simulator acts as
slave integrator, working on request.

Without loss of generality, it will be assumed that the block
diagram simulator uses the well-known Fourth-Order Runge-
Kutta formula, which is known as ode4 in Simulink:

()
()
()
()

4
1

1 1 1
1

1 1 1

2 1 1 1 1 1

3 1 1 1 1 2

4 1 1 1 1 3

,

2, 2

2, 2

,

i i
j j

j

i i

i i

i i

i i

x x h b K

K f t x

K f t h x h K

K f t h x h K

K f t h x h K

+

=

= +

=

= + +

= + +

= + +

∑

 (20)

In order to advance a time-step from 1
it to 1

1
it + , the block

diagram simulator needs to evaluate all blocks in the model
four times, one for each term Kj. The first evaluation is
performed at ()1 1,i it x , using the states (x1 in this case) computed
from the previous time-step. In block diagram simulator
terminology, this evaluation is known as a major time-step,
while the next evaluations (corresponding to K2, K3 and K4) are
known as minor time-steps.

The cosimulation interface block in Figure 3 is
responsible for evaluating the dynamic response of m2 at the
times required by the block diagram simulator. It contains a set
of functions and data structures responsible for synchronizing
the numerical integrations in the block diagram simulator and
the external simulator. The structure and behavior of this block
are represented in Figure 4. When the cosimulation interface
block is evaluated at a given time, it calls the eval_slave
function, whose algorithm is represented in Table 1 and will be
described in the next paragraphs.

Figure 4: co-simulation interface block working diagram.

Table 1: eval_slave function algorithm, in pseudo-code.

1) if t1 is a major time-step
store ()1 1 1, ,i i it x x
n=0

2a): if (slowest-first) then
while ()2 1

j nt t+ <
advance integration step in external simulator
store results ()2 2 2, ,j n j n j nt x x+ + + ; n=n+1

end
2b): if (fastest-first) then

while ()2 2 1
j nt h t+ + <

advance integration step in external simulator
store results ()2 2 2, ,j n j n j nt x x+ + + ; n=n+1

end
3) Interpolate or extrapolate () ()2 1 2 1,x t x t at t1

In step 1, if the evaluation is performed in a major time-

step (block diagram simulators provide routines to determine
this condition), the input time and states (1x and 1x in this
case) are appended to a dataset that holds the time-history of
these values. Input states at minor time-step evaluations are not

 6 Copyright © 2009 by ASME

stored because they do not correspond to integration points in
the timeline.

Step 2 determines if the external simulator should move
ahead in the numerical integration of m2. Two criteria are
available to take this decision (steps 2a and 2b), depending on
the selected synchronization scheme: slowest-first and fastest-
first [10]. In the slowest-first scheme represented in step 2a,
the numerical integration of the slowest subsystem (m2, in the
external simulator) is always ahead of the fastest subsystem
(m1, in the block diagram simulator). Therefore, when the
cosimulation interface block is evaluated at t1 > t2, it calls the
external simulator to move ahead in the numerical integration
of m2 a certain number of time-steps (represented by counter
variable n) until t1 < t2. After each time-step, the states of m2
(2x and 2x) are appended to a dataset that holds the time-
history of these values. In this process, the integration scheme
of the external simulator will need the values of 1x and 1x at
particular instants: these values are interpolated or extrapolated
from the time-history of major time-steps (stored in step 1) by
the eval_master function. The fastest-first scheme represented
in step 2b is very similar, but the numerical integration of the
slowest subsystem m2 is always one time-step h2 behind the
fastest subsystem m1.

Finally, in step 3 the values of 2x and 2x at t1 requested by
the block diagram simulator are interpolated or extrapolated
from the time-history of the numerical integration of m2, stored
in step 2.

The interpolation or extrapolation of states in the
eval_slave and eval_master functions is performed using order
P polynomials. The user can select the value of P from 0 to 4.
The polynomials are built with P+1 time-steps tP ... t0, selected
as follows: tP is the time-step closest to the evaluation time t
that satisfies tP > t (if there is any time-step ahead of t), and tP-1
... t0 are the previous time-steps stored in the time-history.

The functions and data structures of the cosimulation
interface have been implemented as a C/C++ library
independent of the external simulator and the number of shared
states. The external simulator only needs to provide two
functions: a function to move ahead a time-step in the
numerical integration and return the resulting states, and a user
routine to hook the eval_master function. Most dynamics
simulation tools can satisfy these requirements.

2.4 Smoothing techniques
For models with very different time scales in their

subsystems (high values of FR), interpolation and extrapolation
techniques may fail to give correct results in weak coupled
multirate co-simulation. Oberschelp [16] described a smoothing
technique to overcome this problem. A similar strategy has
been tested in this work. Smoothing is expected to improve the
global precision of the simulation, avoiding the need of raising
the number of integration time-steps per cycle, or using higher
degree integrators, which would noticeably increase the elapsed
time in computations.

When using smoothing, the interpolation or extrapolation
strategies described in the previous Section are replaced by an
averaging of the values of the fast subsystem during the last
time-step of the slow one. This averaging is performed on the
basis of a fastest-first method, with the integration of the fast
subsystem being performed in advance with respect to the slow
one. It should be noted that the use of extrapolation techniques
is still required during the calls to the eval_slave function, for
the computation of the states of the slow subsystem at the
times required by the fast one.

When the slow subsystem needs to evaluate its states at
time 2

nt , it requests the states of the fast subsystem at this time,
1
nx , and their derivatives, through a call to the eval_master

function. The value of the states of the fast subsystem at time
2
nt is determined by averaging the buffered values of 1x in the

time-history from time 1
2
nt − to 2

nt , and the same operation is
done with their derivatives. The averaged value, 1

nx , is
returned by the eval_master function and considered constant
during the integration of the time-step of the slow subsystem.

2.5 Algebraic loops
Block diagram simulators allow creating algebraic loops

in the model by connecting the output of a block to its input
throughout direct feedthrough blocks (i.e., no differentiation or
integration blocks). Algebraic loops are a convenient way to
model certain problems, but they require an iterative solution
at each time-step in the numerical integration. As a result, they
drastically increase simulation times, which is usually
unacceptable for weakly coupled co-simulation of mechatronic
systems. Several techniques can avoid algebraic loops: delay
and memory blocks, which delay the value of a variable one
time-step, are examples. It is very convenient to test the
proposed multirate method with this modeling technique, since
it is often present in block diagram simulations.

S-function

MATLAB
Function

1
s

xo 1
s

xo-C-

-C-

x2

x1
x1_dd

()()1 1 1 2 1 2 1/x k x k x x m= + −

1
x

1iF −

2
x

1
x

1
x

1
x

1
s 1

s()1
0x

()1
0x

Cosimulation
interface

1it −

2
x

2
x

Clock

Springs

it

()2 1 2 3 2F k x x k x= − −

Figure 5: Simulink model with memory blocks to

avoid algebraic loop.
In the model shown in Figure 3, spring forces acting on m2

are evaluated inside the external simulator. If these forces are

 7 Copyright © 2009 by ASME

evaluated in the block diagram simulator, an algebraic loop can
appear, as shown in Figure 5: the input force to the
cosimulation interface is connected to its output x2 throughout
the direct feedthrough block springs. The algebraic loop is
avoided by placing memory blocks in the force and time signals
before entering the cosimulation interface block. This model
will also be used to test the proposed multirate method.

2.6 Numerical experiments and error measurement
Preliminary investigations confirmed that the behavior of

the multirate method is mostly affected by the frequency ratio
FR, while the other ratios defined in Equation (5) do not have a
significant impact. Therefore, the test problem described in
Section 2 has been adjusted with AR1 = 0.1, AR2 = -1000 and
AR12 = 0.1; see Figure 2 for an example of the dynamic
response of x1. A sweep of frequency ratios FR is performed in
order to evaluate how this parameter affects the co-simulation
process.

In the block diagram simulator (Simulink), the ode4
integrator is used, while the multibody simulator uses the
trapezoidal rule. Step-sizes h1 and h2 have been adjusted to
perform 100 time-steps per cycle in each simulator. These step-
sizes are small enough to keep integration errors very low in
both subsystems. Each numerical experiment consists on a
simulation of 100 cycles of the fastest frequency ω1, which
corresponds to 100/FR cycles of the slowest frequency ω2.

The dynamic response obtained from the weakly coupled
co-simulation is compared with the analytical solution of
Equation (3). The error in the numerical simulation is measured
in two ways: position error and energy error. Position error is
given by Equation (21)

2

1

1 exactn
i i

i rms

x xFRx
N n x=

⎛ ⎞−
∆ = ⎜ ⎟

⎝ ⎠
∑ (21)

where xi is position at time ti obtained in the numerical
simulation, exact

ix is the position at the same time obtained from
the analytical solution in Equation (3), and n is the number of
points of time in the time-history of the solution (n = 10,000).
To obtain a relative error, the absolute error in position is
divided by the quadratic mean in the simulation (xrms) instead of

exact
ix to avoid singularities when the analytical solution takes

values close to zero. N = 100 is the number of simulated cycles
of the fast subsystem, and the factor FR/N is introduced to
correct the accumulation of errors when a high number of
cycles of the slow subsystem are present. In this way, errors
obtained from Equation (21) are comparable between
numerical experiments with different FR ratios. If the test
problem is fully modeled and solved in Simulink (without co-
simulation) with the ode4 integrator and abovementioned step-
size, the position error given by Equation (21) is in the order of
10-8, which corresponds to an almost exact solution. Position
errors below 10% still correspond to a good numerical solution,
which cannot be distinguished from the analytical solution at
first glance.

However, Equation (21) gives high position errors when
the numerical solution presents a small delay compared to the
analytical solution, even when the phase difference is very
small and the numerical solution can be still considered very
good. Therefore, this position error can mislead about the
precision in certain situations. To overcome this limitation, an
additional measurement of the energy error can be used, as the
system is fully conservative. Thus, the energy error is defined
as

2

0

1 0

1 n
i

i

E EFRE
N n E=

⎛ ⎞−
∆ = ⎜ ⎟

⎝ ⎠
∑ (22)

being E0 the initial value of the energy of the system (that
should be constant during the simulation), and Ei the energy at
time ti obtained in the numerical simulation. The oscillations
that have been observed in the energy history of the system
(see Figure 6) justify the use of a norm-2 error instead of a
simple comparison between the initial and final energy levels
of the system.

It has been observed that some numerical simulations
deliver a low energy error despite the position time-history is
obviously incorrect: the numerical integration conserves the
system energy but gives a wrong solution after a few cycles.
Therefore, both errors (position and energy) should be
considered to determine the precision of the obtained
numerical solutions.

0 20 40 60 80 100

-0.4

-0.2

0

0.2

Time (s)

En
er

gy
 e

rr
or

 (J
)

Figure 6: Time-history of the energy error in the numeric

simulation (FR = 30), with cubic interpolation.

3 RESULTS AND DISCUSSION

3.1 Performed simulations
Both fastest-first and slowest-first approaches have been

tested. They will be referred to in the following as FF and SF.
In addition, the interpolation orders used in eval_master and
eval_slave functions can be different and one of the following:
zero (constant value, designed as O0), linear (O1), quadratic
(O2), cubic (O3) and fourth order (O4).

The position error for x1 and the energy error, defined in
Equations (21) and (22), have been measured for each
interpolation method for a span of FR ranging from 1.5 to 100.
Results can be seen in Figure 7.

 8 Copyright © 2009 by ASME

Figure 7: Errors in the position of x1 (left) and energy (right) for different interpolation techniques as a function of FR, with

SF (a) and FF (b) strategies.

The performed simulations show that it is not possible to
find an optimal “general purpose” co-simulation method, even
for such a simple test problem as the one described in the
previous Section.

For FR < 25, slowest-first (SF) integration combined with
cubic interpolation (O3) shows the best performance, attaining
good position and energy error levels. The use of higher order
interpolation polynomials suffers from instabilities, which
results in the losing of the reference solution, and therefore has
not helped the reduction of the errors. FF techniques, on the
other hand, attain very low error levels in the integration of the
position of x2, as it was expected, because the integration of the
slow subsystem is performed on the basis of already evaluated
values of x1; however, this improvement is made at the cost of
worsening the energy levels and the shape of the time-history
of x1.

For 25 < FR < 50, SF integration without interpolation
(O0) seems to be the most suitable strategy. The use of FF

strategies in this range of frequency ratios leads to a numerical
instability that translates into the amplification of the
oscillations in x1, and can be visualized in Figure 7 as a peak in
the error graphics around FR = 40.

For FR > 50, the position errors with SF strategies are
always over 10% and they follow an upwards trend; among
them, the use of no interpolation (O0) gives the best results in
position and energy. On the other hand, FF techniques seem to
stabilize the position error in this region under 10% with
reasonable levels of energy errors, at least with O2 and higher
interpolation degrees. However, the analysis of the position
history shows that this is a consequence of the attenuation of
the fast oscillations of the first subsystem, m1. In fact, when FR
grows to values of 80 and higher, the inverse effect takes place
and the oscillations are amplified, leading to great errors in
position and energy. In both cases -amplification and
attenuation- the results cannot be considered valid, even when
low error levels in both position and energy are attained.

a)

b)

0%

1%

10%

100%

0 25 50 75
FR

Po
si

tio
n

er
ro

r

O0

O1

O2

O3

O4
1,0E-07

1,0E-04

1,0E-01

0 25 50 75
FR

En
er

gy
 e

rro
r

O0

O1

O2

O3

O4

0%

1%

10%

100%

0 25 50 75
FR

Po
si

tio
n

er
ro

r

O0

O1

O2

O3

O4
1,0E-07

1,0E-04

1,0E-01

0 25 50 75
FR

En
er

gy
 e

rro
r

O0

O1

O2

O3

O4

 9 Copyright © 2009 by ASME

Two consequences can be inferred from the exposed:
• The errors defined in Equations (21) and (22), and used as

indicators of the correctness of the solution, are not enough
for determining the suitability of a co-simulation method for
solving a particular problem.

• The use of FF strategies can lead to the rising of numerical
instabilities, resulting in amplified oscillations in the
solution of the problem or well, on the contrary, to the
filtering of small oscillations, with the loss of the
contribution of the fast frequency ω1 to the solution.

For values of FR > 90, even SF with O0 configuration is

affected by a sudden growth of the errors and every
interpolation degree fails completely to follow the analytic
reference solution.

The use of smoothing techniques can help the reduction of
the error for relatively high values of FR, increasing the ability
of the simulation to track the reference solution. In order to
attain acceptable results, the polynomial fitting interpolation
methods for the evaluation of the states of the slow subsystem
can be substituted with least squares approximations. This can
help to filter the stiff variations in velocities that arise when the
difference of time-steps grow.

0 2 4 6 8 10 12 14 16 18 200

5

10

Time (s)

C
oo

rd
in

at
e

x1

Analytical
Numerical

0 2 4 6 8 10 12 14 16 18 200

5

10

Time (s)

C
oo

rd
in

at
e

x1

Analytical
Numerical

0 2 4 6 8 10 12 14 16 18 200

5

10

Time (s)

C
oo

rd
in

at
e

x1

Analytical
Numerical

a)

b)

c)

Figure 8: Response to 20 simulation cycles of the fast

subsystem. a) Slowest-first with O0. b) Fastest-first with
O3. c) Smoothing with O3. FR = 90.

A comparison of the co-simulation results can be seen in
Figure 8. The co-simulated output for variable x1 is compared
to the analytical solution of the motion (thin continuous line);
in the upper image no interpolation has been used, in the
central graphic, O3 interpolation has been used in eval_master
and eval_slave functions. The lower image shows the better
accuracy obtained using the smoothing technique for the same
problem with O3 interpolation in eval_slave function.
However, it must be noted that smoothing is subject to the same
filtering or amplifying problems that fastest-first

implementations suffer. As a consequence, smoothing has only
shown an acceptable performance for certain combinations of
FR and the interpolation (or approximation) algorithm used for
the slow subsystem.

Regarding to the equivalent model with an algebraic loop,
depicted in Figure 5, the obtained results have been practically
equivalent to those of the original model of Figure 3. The use
of memory blocks has yielded a better performance than the
equivalent model with delay blocks.

In most simulations, it has been observed that the
accumulated error grows as simulation time increments. This is
not expected to happen in real systems for two reasons. First,
real systems use to have dissipative elements like dampers that
soften the effect of small vibrations. In the second place, most
co-simulated systems include control elements, oriented to
reference tracking, which make the whole system less sensitive
to error accumulation.

4 CONCLUSIONS

Several common requirements for co-simulation involving
a general-purpose block diagram simulator and an external
simulation tool have been identified. A multirate co-simulation
interface for block diagram simulators has been designed and
assessed on a simple test problem. This interface allows the use
of different integrators and time scales in each subsystem of the
whole model. Two co-simulation strategies, fastest-first and
slowest-first, have been programmed, and several orders of
interpolation and approximation methods have been
implemented and compared in order to find the most suitable
co-simulation configuration as a function of the different time
scales of the subsystems. Additionally, smoothing techniques
have also been implemented and tested.

Results suggest that the configuration of the interface must
be changed depending on the frequency ratio FR between
subsystems, in order to attain the best performance. The
interpolation polynomial degree and the fastest-first/slowest-
first configuration should be adjusted as a function of the most
critical subsystem, in which lower errors are allowed. In
general lines, the following conclusions can be pointed:
• For low frequency ratios (FR < 50), SF is the best co-

simulation strategy. FF can be better for certain values of
FR, especially for FR > 50, but it is subject to numerical
problems that can lead to the degeneration of the solution.

• For FR < 25, cubic interpolation (O3) with SF has yielded
the best results. In the range 25 < FR < 50, no interpolation
(O0) with SF is recommended.

• For FR > 50, energy and position (for the variable x1) errors
grow up to high levels with every co-simulation strategy.
The use of smoothing techniques can help the reduction of
these errors for certain values of FR.

Currently, research is being carried out in order to find a

suitable indicator of the ability of a co-simulation method to
simulate a certain problem. Future research is needed for
extending the range of valid frequency ratios the interface is

 10 Copyright © 2009 by ASME

able to tackle, particularly with the development of techniques
that overcome the problems that appear for frequency ratios
over FR = 50.

ACKNOWLEDGMENTS
This research has been sponsored by the Spanish MEC

(grant No. DPI2006-15613-C03-01 and the F.P.U. Ph.D.
fellowship No. AP2005-4448).

REFERENCES

[1] Samin, J. C., Bruls, O., Collard, J. F., Sass, L., and

Fisette, P., 2007, "Multiphysics Modeling and
Optimization of Mechatronic Multibody Systems,"
Multibody System Dynamics, 18(3), pp. 345-373.

[2] The Mathworks, Inc., 2009, "MATLAB,"
http://www.mathworks.com/.

[3] National Instruments, 2009, "MATRIXx/SystemBuild,"
http://www.ni.com/matrixx/what_is_matrixx.htm.

[4] INRIA, 2009, "Scilab," http://www.scilab.org/.
[5] MSC.Software Corporation, 2004, "ADAMS,"

http://www.mscsoftware.com/.
[6] Intec GmbH, 2009, "SIMPACK,"

http://www.simpack.de/.
[7] Function Bay Inc., 2004, "RecurDyn,"

http://www.functionbay.co.kr/.
[8] Liao, Y. G., and Du, H. I., 2001, "Cosimulation of Multi-

Body-Based Vehicle Dynamics and an Electric Power
Steering Control System," Proceedings of the Institution
of Mechanical Engineers, Part K: Journal of Multi-body
Dynamics, 215(3), pp. 141-151.

[9] Vaculin, O., Kruger, W. R., and Valasek, M., 2004,
"Overview of Coupling of Multibody and Control
Engineering Tools," Vehicle System Dynamics, 41(5), pp.
415-429.

[10] Gear, C. W., and Wells, D. R., 1984, "Multirate Linear
Multistep Methods," Bit, 24(4), pp. 484-502.

[11] Engstler, C., and Lubich, C., 1997, "Multirate
Extrapolation Methods for Differential Equations With
Different Time Scales," Computing (Vienna/New York),
58(2), pp. 173-185.

[12] Savcenco, V., Hundsdorfer, W., and Verwer, J. G., 2007,
"A Multirate Time Stepping Strategy for Stiff Ordinary
Differential Equations," BIT Numerical Mathematics,
47(1), pp. 137-155.

[13] Verhoeven, A., Ter Maten, E. J. W., Mattheij, R. M. M.,
and Tasic, B., 2007, "Stability Analysis of the BDF
Slowest-First Multirate Methods," International Journal of
Computer Mathematics, 84(6), pp. 895-923.

[14] Tesis DYNAWare, 2009, "veDYNA,"
http://www.tesis.de/en/index.php?page=544.

[15] Busch, M., Arnold, M., Heckmann, A., and Dronka, S.,
2007, "Interfacing SIMPACK to Modelica/Dymola for
Multi-Domain Vehicle System Simulations," SIMPACK
News 11[2], 1-3.

[16] Oberschelp, O., and Vocking, H., 2004, "Multirate
Simulation of Mechatronic Systems," LCM '04:
Proceedings of the IEEE International Conference on
Mechatronics 2004, pp. 404-409.

