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ABSTRACT 
Dynamic simulation of complex mechatronic systems can 

be carried out in an efficient and modular way making use of 
weakly coupled co-simulation setups. When using this 
approach, multirate methods are often needed to improve the 
efficiency, since the physical components of the system usually 
have different frequencies and time scales. However, most 
multirate methods have been designed for strongly coupled 
setups, and their application in weakly coupled co-simulations 
is not straightforward due to the limitations enforced by the 
commercial simulation tools used for mechatronics design. 

This work describes a weakly coupled multirate method 
applied to combine a block diagram simulator (Simulink) with 
a multibody dynamics simulator in a co-simulation setup. A 
double-mass triple-spring system with known analytical 
solution is used as test problem in order to investigate the 
behavior of the method as a function of the frequency ratio 
(FR) of the coupled subsystems. Several synchronization 
schemes (fastest-first and slowest-first) and 
interpolation/extrapolation methods (polynomials of different 
order and smoothing) have been tested. 

Results show that the slowest-first methods deliver the best 
results, combined with a cubic interpolation (for FR < 25) or 
without interpolation (for 25 < FR < 50). For FR > 50, none of 
the tested methods can deliver precise results, although 
smoothing techniques can reduce interpolation errors for 
certain situations. 

 
1 INTRODUCTION 

Modern complex mechatronic systems are made up of 
multi-domain components of different nature. An automobile is 
a very representative example of these kinds of systems, 
involving mechanical components (chassis, suspensions, 
steering mechanism, powertrain), active control devices (Anti-
lock Braking System, Electronic Stability Control, traction 
control), hydraulic devices (brake circuit) and power sources 

(internal combustion engine or electric motors). Due to the 
increasing demand of quality and performance, the traditional 
design approach based on a sequential design of the 
components can no longer be applied to such systems: 
engineers need to model and simulate the dynamic response of 
the whole system, taking into account the simultaneous 
interaction phenomena between components.  

The modeling of complex mechatronic systems can be 
accomplished by two different strategies: strongly coupled and 
weakly coupled. On one hand, the strongly coupled strategy 
assembles the dynamic equations of each subsystem into a 
monolithic set of equations, which can be numerically 
integrated in a single environment. On the other hand, the 
weakly coupled strategy does not assemble the equations: their 
numerical integration is performed in parallel by several 
interconnected environments that exchange information during 
the integration process, working in a co-simulation 
configuration. A review about both strategies is provided in 
[1]. 

The weakly coupled strategy has important advantages 
over the strongly coupled one: specialized modeling and 
simulation tools, familiar to experts in the corresponding field, 
can be applied to each component. In addition, component 
models can be modified with minor impact on other 
components, which results in a better modularity of the whole 
model. For example, control and hydraulic devices are usually 
modeled and simulated in general-purpose block diagram 
simulators like Matlab/Simulink from Mathworks [2], 
MATRIXx/SystemBuild from National Instruments [3] or the 
free open source tool Scilab/Scicos from INRIA [4]. 
Conversely, the behavior of complex mechanical components 
is better modeled and simulated in specialized tools for 
multibody system dynamics like MSC.Adams [5], Simpack [6] 
or Recurdyn [7]; these tools also provide interfaces with the 
aforementioned block diagram simulators, which simplify the 
set up of weakly coupled simulations. Representative examples 
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of these kinds of co-simulation setups are given in [8] and [9], 
where the authors combine a multibody system simulation 
package (ADAMS and Simpack, respectively) with a block 
diagram simulator (Simulink) to model a full vehicle equipped 
with electronic control devices. 

Another important feature of complex mechatronic 
systems, derived from their multi-domain nature, is the 
presence of different time scales, which results in widely 
different dynamic response characteristics in terms of 
frequencies. For example, mechanical components have slow 
frequency responses compared to fast electronic components. 
The computational efficiency of dynamic simulations of 
complex mechatronic systems is quite important, because these 
models are often used in optimization processes (where each 
function evaluation involves a complete dynamic simulation) or 
hardware-in-the-loop settings (where the dynamic simulation 
must run in real-time). In order to make the numerical 
integration of the dynamic equations of the whole system as 
efficient as possible, each component should be integrated with 
a stepsize adapted to its time scale. This procedure is known as 
multirate integration. 

Research on multirate integration methods for ordinary 
differential equations (ODE) has been carried out since the late 
1970s [10]. The basic idea is to employ two (or more) time 
grids: a coarse one for the slow components, and a refined one 
for the fast components; the coupled terms in the slow and fast 
equation sets are estimated by means of extrapolation or 
interpolation methods. Many contributions to this subject have 
been proposed, including advanced techniques like dynamic 
partitioning of equations with automatic identification of fast 
and slow components during the integration [11], self-adjusting 
multirate time stepping strategies [12] and stability analysis of 
the proposed methods [13].  

The application of existing multirate integration methods 
to mechatronic models obtained by the strongly coupled 
strategy is straightforward, since they are precisely designed to 
work on a monolithic set of equations with full control on the 
integration process. However, if the mechatronic system is 
modeled according to the weakly coupled strategy, these 
multirate integration methods cannot be applied directly due to 
their particular features: 

(a) They introduce modifications in the integration 
schemes, something that is not possible in commercial off-the-
shelf modeling and simulation tools used for weakly coupled 
co-simulation. For example, the aforementioned block diagram 
simulators and multibody system simulation packages offer 
their own set of integration schemes that cannot be modified. 

(b) They assume that the coarse and refined time-grids are 
equidistant and synchronized, which means that the large 
stepsize H is a multiple of the small stepsize h. This condition 
cannot be guarantied in weakly coupled co-simulations if one 
or more subsystems are integrated with a variable stepsize 
integrator, since the stepsize control algorithms of the different 
simulation environments cannot be synchronized. 

(c) They mitigate the unstable behavior caused by the 
explicit extrapolation of some equation terms by introducing 
implicit schemes, which involve some kind of iterative 
process. Again, commercial off-the-shelf simulation tools like 
block diagram simulators do not allow this kind of iteration 
with other simulation tools.  

Due to these impediments, commercial state-of-the-art 
simulation environments used in the mechatronics industry do 
not yet provide tools to enable multirate integration when they 
are used in weakly coupled co-simulation setups. Two 
examples of this situation are provided: the first one is 
veDYNA [14], a real-time vehicle dynamics simulation 
environment very popular in the automotive industry, which is 
based on Matlab/Simulink. veDYNA works as an external 
simulation tool embedded in Simulink, and provides a library 
of mechanical elements to model any kind of vehicle. Non 
mechanical elements, like electronic and control devices, are 
modeled in Simulink as usual, exchanging input and output 
data with the mechanical model. veDYNA uses an internal 
semi-implicit fixed-step Euler integration scheme to solve the 
equations of motion of the vehicle, and requires that the 
Simulink integration must be performed with the ode1 
integrator (explicit fixed-step Euler’s method) in order to 
properly synchronize both integrations. This requirement is a 
strong drawback, since Simulink’s ode1 integration scheme is 
not suited at all in many situations. Another example of the 
limitations of currently available simulation environments is 
SIMAT, the interface provided by the multibody simulation 
software Simpack to perform co-simulation with Simulink [6]. 
SIMAT works as a Simulink block that exchanges data 
between the Simpack model and the Simulink model during the 
integration. However, its current implementation only allows 
fixed stepsize integrators with the same stepsize in both 
simulation environments. The same constraint applies to other 
packages for multibody system simulation, like ADAMS, 
which provide interfaces for performing co-simulation with 
block diagram simulators: none of them support multirate 
integration. 

Research is being carried to introduce multirate methods 
in weakly coupled co-simulation environments, principally in 
those which combine general-purpose block diagram 
simulators with external specialized simulation tools, a 
common setup in the industry. Busch et al [15] have tested 
several approaches to improve the aforementioned Simpack’s 
SIMAT interface to support variable stepsizes in both sides of 
the co-simulation environment; in a similar way, Oberschelp 
and Vöcking [16] have investigated the behavior of some 
multirate techniques in weakly coupled co-simulations. 
However, these works apply multirate methods to solve a 
particular mechatronic model, and therefore their conclusions 
cannot be generalized nor extrapolated to other cases.  

The goal of this work is to gain insight into the behavior 
and performance of multirate methods in weakly coupled co-
simulations environments. To achieve this, the first 
contribution of this paper is an algorithm to implement a 
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general multirate method (i.e., not constrained to synchronized 
time grids or a particular integration scheme) able to couple 
block diagram simulators with external simulation tools, like 
multibody simulation packages. The proposed algorithm can be 
configured to work in different modes and to use different 
interpolation and extrapolation methods. The second 
contribution of this paper is to study the accuracy of these 
coupling techniques in problems of different characteristics, in 
order to obtain general conclusions about the applicability of 
multirate methods in weakly coupled co-simulations based on 
block diagram simulators. 

The remaining of the paper is organized as follows: 
Section 2 describes the methods used to carry out the research: 
a test problem and the algorithms to implement a general 
multirate method in a block diagram simulator. Section 3 
presents and discusses the results of numerical experiments. 
Finally, Section 4 provides conclusions and areas of future 
work. 

 
2 METHODS 

A test problem involving two subsystems with fast and 
slow dynamic responses will be solved by coupling a block 
diagram simulation tool (to integrate the fast subsystem) with 
an external software for multibody system simulation (to 
integrate the slow subsystem). The parameters of the test 
problem will be adjusted to generate a range of co-simulation 
situations, which will be used to test different coupling 
strategies in terms of precision.  

 
Figure 1: test problem. 

2.1 Test problem 
The double-mass triple-spring system shown in Figure 1 

has been selected as test problem. It is made up of two 
subsystems represented by masses m1 and m2, which are 
coupled by the spring k2. This simple, two degree-of-freedom 
system presents the advantage of having a known analytical 
solution for its dynamic response, which can be used as a 
reference in order to measure the accuracy of the coupled 
multirate numerical integration carried out by any co-
simulation scheme. The dynamics of the test problem is 
governed by Equation (1): 
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where x1 and x2 measure the horizontal displacement of the 
masses from their equilibrium position. Equation (1) is a simple 
second order differential equation whose analytical solution is 
given by  
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  (2) 
where ω1 and ω2 are the natural frequencies of the two 
vibration modes of the system, and the terms Cij are constants 
that define the amplitude of the vibration. In order to simplify 
the problem, sinus terms in Equation (2) are removed by 
setting the initial velocities to zero: 
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( ) ( ) ( )
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The dynamic response shown in Equation (3) is a function 
of six independent parameters (ω1, ω2, C11, C13, C21, and C23) 
For the purposes of this study, two of them are set to fixed 
values in Equation (4), and the rest are presented in a more 
suitable form in Equation (5): 
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From here on, frequencies ω1 and ω2 will be identified 
respectively with the primary frequencies of masses m1 (fast 
subsystem) and m2 (slow subsystem), assuming ω1>ω2, 
C11>C13 and C23>C21. The ratios defined in Equation (5) are 
interpreted as follows:  
• The frequency ratio FR measures how fast the fast 

subsystem m1 is, compared with the slow subsystem m2. 
• The amplitude ratio AR12 compares the primary amplitudes 

of both subsystems (C11 for m1 and C23 for m2). 
• The amplitude ratios AR1 and AR2 measure how much the 

dynamic response of each subsystem is affected by the 
other subsystem.  
Numerical experiments performed in Section 3 will use 

different sets of values for the ratios defined in Equation (5), in 
order to reproduce diverse co-simulation situations. As 
example, Figure 2 shows the dynamic response of x1 for FR = 
30, AR12 = 0.1, AR1 = 0.1 and AR2 = -1000. 
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Figure 2: dynamic response of x1. 

After solving the dynamics of the problem in analytical 
form, the final step is to find the physical parameters of the 
system (m1, m2, k1, k2, k3) and the initial conditions x1(t = 0) 
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and x2(t = 0) as a function of the response parameters defined in 
Equations (4) and (5). The resulting expressions will allow 
adjusting the physical parameters of the test problem in order to 
generate any desired dynamic response in its two subsystems. 
Note that the five aforementioned physical parameters can be 
scaled by the same factor without changing the dynamic 
response of the system, and therefore one of them must be 
fixed in advance. The selection of k2 as fixed parameter greatly 
simplifies the mathematical manipulations: 

2 1 N/mk =      (6) 
The remaining physical parameters can be obtained from 

the eigenvalue equation: 
( )2ω− =K M A 0     (7) 

where A is the matrix of modal amplitudes of the system, K 
and M are the stiffness and mass matrices shown in Equation 
(1) and ω stands for the natural frequencies of the system. The 
characteristic polynomial of the eigenvalue equation leads to a 
biquadratic equation in ω: 
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which can be analytically solved, giving two equations of the 
form 

( )1 2 1 2 3, , , ,f m m k k kω =     (9) 
Two more equations can be obtained by substituting the 

solution given in Equation (3) in the equations of motion given 
by Equation (1); as each mode of vibration must satisfy the 
equations of motion, they lead to: 
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Equations (9) and (10) form a set of four equations whose 
solution is expressed using the intermediate parameters a and b: 
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Finally, initial positions can be easily obtained from 
Equations (3) and (4): 
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 (16) 
Equations (11) to (16) provide the values for physical 

parameters and initial conditions that generate the desired 
dynamic response of the test problem, described by the 
parameters in Equation (5). The range of validity of these 
expressions is limited by the fact that the physical parameters 
(m1, m2, k1, k2, k3) must be positive. This constraint limits the 
values of the parameters defined in Equation (5) within the 
following limits: 
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2.2 Modeling approach 
The proposed test problem is modeled using a weakly 

coupled co-simulation scheme that combines a general-purpose 
block diagram simulator with a multibody simulation software, 
a very common setup in the design and development of 
mechatronic systems. Simulink [2] has been selected as block 
diagram simulator, since it is a well-known tool in this field. 
However, the building blocks and modeling procedures 
employed in Simulink are also available in other block diagram 
simulators like SystemBuild and Scicos, and therefore the co-
simulation techniques presented in this section are not 
particular to Simulink and can be implemented in other tools in 
a straightforward way. The multibody simulation software is a 
C++ in-house developed code. 

The block diagram model is shown in Figure 3: the 
dynamics of m1 (integrated by Simulink) is modeled in the 
upper part of the figure, where its acceleration goes through a 
double integration to obtain its position. On the other hand, the 
numerical integration of the dynamics of m2 is performed in 
the external multibody simulation package embedded in the 
block named cosimulation interface located at the bottom of 
the figure. This block (of type S-Function in Simulink, 
UserCode block in SystemBuild or C/Fortran block in Scicos) 
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contains a user function that evaluates the position and velocity 
of m2 from the position and velocity of m1. The design and 
behavior of this block will be described in the following 
subsection. Since the proposed test problem has no damping, 
the velocities are not needed to evaluate the equation terms, but 
they are represented in Figure 3 for the sake of generality.  
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Figure 3: Simulink model of the test problem. 

2.3 Coupling strategies for multirate integration 
As explained in the Introduction, simulation environments 

used in weakly coupled co-simulations implement their own set 
of integration schemes that cannot be modified. Therefore, our 
purpose is to implement a coupling scheme that enables a 
multirate integration of m1 and m2 independently of the 
integration schemes and time-steps. In the proposed coupling 
scheme, the block diagram simulator acts as master integrator, 
since it is responsible of starting and stopping the numerical 
simulation. On the other hand, the external simulator acts as 
slave integrator, working on request.  

Without loss of generality, it will be assumed that the block 
diagram simulator uses the well-known Fourth-Order Runge-
Kutta formula, which is known as ode4 in Simulink: 
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   (20) 

In order to advance a time-step from  1
it  to 1

1
it + , the block 

diagram simulator needs to evaluate all blocks in the model 
four times, one for each term Kj. The first evaluation is 
performed at ( )1 1,i it x , using the states (x1 in this case) computed 
from the previous time-step. In block diagram simulator 
terminology, this evaluation is known as a major time-step, 
while the next evaluations (corresponding to K2, K3 and K4) are 
known as minor time-steps.  

The cosimulation interface block in Figure 3 is 
responsible for evaluating the dynamic response of m2 at the 
times required by the block diagram simulator. It contains a set 
of functions and data structures responsible for synchronizing 
the numerical integrations in the block diagram simulator and 
the external simulator. The structure and behavior of this block 
are represented in Figure 4. When the cosimulation interface 
block is evaluated at a given time, it calls the eval_slave 
function, whose algorithm is represented in Table 1 and will be 
described in the next paragraphs. 

 
Figure 4: co-simulation interface block working diagram. 

 
Table 1: eval_slave function algorithm, in pseudo-code. 

1) if t1 is a major time-step 
store ( )1 1 1, ,i i it x x  
n=0 

2a): if (slowest-first) then 
while ( )2 1

j nt t+ <  
advance integration step in external simulator 
store results ( )2 2 2, ,j n j n j nt x x+ + + ; n=n+1 

end 
2b): if (fastest-first) then 

while ( )2 2 1
j nt h t+ + <  

advance integration step in external simulator 
store results ( )2 2 2, ,j n j n j nt x x+ + + ; n=n+1 

end 
3) Interpolate or extrapolate ( ) ( )2 1 2 1,x t x t  at t1 

 
In step 1, if the evaluation is performed in a major time-

step (block diagram simulators provide routines to determine 
this condition), the input time and states ( 1x  and 1x  in this 
case) are appended to a dataset that holds the time-history of 
these values. Input states at minor time-step evaluations are not 
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stored because they do not correspond to integration points in 
the timeline. 

Step 2 determines if the external simulator should move 
ahead in the numerical integration of m2. Two criteria are 
available to take this decision (steps 2a and 2b), depending on 
the selected synchronization scheme: slowest-first and fastest-
first  [10]. In the slowest-first scheme represented in step 2a, 
the numerical integration of the slowest subsystem (m2, in the 
external simulator) is always ahead of the fastest subsystem 
(m1, in the block diagram simulator). Therefore, when the 
cosimulation interface block is evaluated at t1 > t2, it calls the 
external simulator to move ahead in the numerical integration 
of m2 a certain number of time-steps (represented by counter 
variable n) until t1 < t2. After each time-step, the states of m2 
( 2x  and 2x ) are appended to a dataset that holds the time-
history of these values. In this process, the integration scheme 
of the external simulator will need the values of 1x  and 1x  at 
particular instants: these values are interpolated or extrapolated 
from the time-history of major time-steps (stored in step 1) by 
the eval_master function. The fastest-first scheme represented 
in step 2b is very similar, but the numerical integration of the 
slowest subsystem m2 is always one time-step h2 behind the 
fastest subsystem m1. 

Finally, in step 3 the values of 2x  and 2x  at t1 requested by 
the block diagram simulator are interpolated or extrapolated 
from the time-history of the numerical integration of m2, stored 
in step 2.  

The interpolation or extrapolation of states in the 
eval_slave and eval_master functions is performed using order 
P polynomials. The user can select the value of P from 0 to 4. 
The polynomials are built with P+1 time-steps tP ... t0, selected 
as follows: tP is the time-step closest to the evaluation time t 
that satisfies tP > t (if there is any time-step ahead of t), and tP-1 
... t0 are the previous time-steps stored in the time-history. 

The functions and data structures of the cosimulation 
interface have been implemented as a C/C++ library 
independent of the external simulator and the number of shared 
states. The external simulator only needs to provide two 
functions: a function to move ahead a time-step in the 
numerical integration and return the resulting states, and a user 
routine to hook the eval_master function. Most dynamics 
simulation tools can satisfy these requirements. 

2.4 Smoothing techniques 
For models with very different time scales in their 

subsystems (high values of FR), interpolation and extrapolation 
techniques may fail to give correct results in weak coupled 
multirate co-simulation. Oberschelp [16] described a smoothing 
technique to overcome this problem. A similar strategy has 
been tested in this work. Smoothing is expected to improve the 
global precision of the simulation, avoiding the need of raising 
the number of integration time-steps per cycle, or using higher 
degree integrators, which would noticeably increase the elapsed 
time in computations. 

When using smoothing, the interpolation or extrapolation 
strategies described in the previous Section are replaced by an 
averaging of the values of the fast subsystem during the last 
time-step of the slow one. This averaging is performed on the 
basis of a fastest-first method, with the integration of the fast 
subsystem being performed in advance with respect to the slow 
one. It should be noted that the use of extrapolation techniques 
is still required during the calls to the eval_slave function, for 
the computation of the states of the slow subsystem at the 
times required by the fast one. 

When the slow subsystem needs to evaluate its states at 
time 2

nt , it requests the states of the fast subsystem at this time, 
1
nx , and their derivatives, through a call to the eval_master 

function. The value of the states of the fast subsystem at time 
2
nt  is determined by averaging the buffered values of 1x  in the 

time-history from time 1
2
nt −  to 2

nt , and the same operation is 
done with their derivatives. The averaged value, 1

nx , is 
returned by the eval_master function and considered constant 
during the integration of the time-step of the slow subsystem. 

2.5 Algebraic loops 
Block diagram simulators allow creating algebraic loops 

in the model by connecting the output of a block to its input 
throughout direct feedthrough blocks (i.e., no differentiation or 
integration blocks). Algebraic loops are a convenient way to 
model certain problems, but they require an iterative solution 
at each time-step in the numerical integration. As a result, they 
drastically increase simulation times, which is usually 
unacceptable for weakly coupled co-simulation of mechatronic 
systems. Several techniques can avoid algebraic loops: delay 
and memory blocks, which delay the value of a variable one 
time-step, are examples. It is very convenient to test the 
proposed multirate method with this modeling technique, since 
it is often present in block diagram simulations. 
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Figure 5: Simulink model with memory blocks to 

avoid algebraic loop. 
In the model shown in Figure 3, spring forces acting on m2 

are evaluated inside the external simulator. If these forces are 
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evaluated in the block diagram simulator, an algebraic loop can 
appear, as shown in Figure 5: the input force to the 
cosimulation interface is connected to its output x2 throughout 
the direct feedthrough block springs. The algebraic loop is 
avoided by placing memory blocks in the force and time signals 
before entering the cosimulation interface block. This model 
will also be used to test the proposed multirate method. 

2.6 Numerical experiments and error measurement 
Preliminary investigations confirmed that the behavior of 

the multirate method is mostly affected by the frequency ratio 
FR, while the other ratios defined in Equation (5) do not have a 
significant impact. Therefore, the test problem described in 
Section 2 has been adjusted with AR1 = 0.1, AR2 = -1000 and 
AR12 = 0.1; see Figure 2 for an example of the dynamic 
response of x1. A sweep of frequency ratios FR is performed in 
order to evaluate how this parameter affects the co-simulation 
process. 

In the block diagram simulator (Simulink), the ode4 
integrator is used, while the multibody simulator uses the 
trapezoidal rule. Step-sizes h1 and h2 have been adjusted to 
perform 100 time-steps per cycle in each simulator. These step-
sizes are small enough to keep integration errors very low in 
both subsystems. Each numerical experiment consists on a 
simulation of 100 cycles of the fastest frequency ω1, which 
corresponds to 100/FR cycles of the slowest frequency ω2.  

The dynamic response obtained from the weakly coupled 
co-simulation is compared with the analytical solution of 
Equation (3). The error in the numerical simulation is measured 
in two ways: position error and energy error. Position error is 
given by Equation (21) 

2

1

1 exactn
i i

i rms

x xFRx
N n x=

⎛ ⎞−
∆ = ⎜ ⎟

⎝ ⎠
∑    (21) 

where xi is position at time ti obtained in the numerical 
simulation, exact

ix  is the position at the same time obtained from 
the analytical solution in Equation (3), and n is the number of 
points of time in the time-history of the solution (n = 10,000). 
To obtain a relative error, the absolute error in position is 
divided by the quadratic mean in the simulation (xrms) instead of 

exact
ix  to avoid singularities when the analytical solution takes 

values close to zero. N = 100 is the number of simulated cycles 
of the fast subsystem, and the factor FR/N is introduced to 
correct the accumulation of errors when a high number of 
cycles of the slow subsystem are present. In this way, errors 
obtained from Equation (21) are comparable between 
numerical experiments with different FR ratios. If the test 
problem is fully modeled and solved in Simulink (without co-
simulation) with the ode4 integrator and abovementioned step-
size, the position error given by Equation (21) is in the order of 
10-8, which corresponds to an almost exact solution. Position 
errors below 10% still correspond to a good numerical solution, 
which cannot be distinguished from the analytical solution at 
first glance.  

However, Equation (21) gives high position errors when 
the numerical solution presents a small delay compared to the 
analytical solution, even when the phase difference is very 
small and the numerical solution can be still considered very 
good. Therefore, this position error can mislead about the 
precision in certain situations. To overcome this limitation, an 
additional measurement of the energy error can be used, as the 
system is fully conservative. Thus, the energy error is defined 
as 

2

0

1 0

1 n
i

i

E EFRE
N n E=

⎛ ⎞−
∆ = ⎜ ⎟

⎝ ⎠
∑    (22) 

being E0 the initial value of the energy of the system (that 
should be constant during the simulation), and Ei the energy at 
time ti obtained in the numerical simulation. The oscillations 
that have been observed in the energy history of the system 
(see Figure 6) justify the use of a norm-2 error instead of a 
simple comparison between the initial and final energy levels 
of the system.  

It has been observed that some numerical simulations 
deliver a low energy error despite the position time-history is 
obviously incorrect: the numerical integration conserves the 
system energy but gives a wrong solution after a few cycles. 
Therefore, both errors (position and energy) should be 
considered to determine the precision of the obtained 
numerical solutions. 
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Figure 6: Time-history of the energy error in the numeric 

simulation (FR = 30), with cubic interpolation. 
 
3 RESULTS AND DISCUSSION 

3.1 Performed simulations 
Both fastest-first and slowest-first approaches have been 

tested. They will be referred to in the following as FF and SF. 
In addition, the interpolation orders used in eval_master and 
eval_slave functions can be different and one of the following: 
zero (constant value, designed as O0), linear (O1), quadratic 
(O2), cubic (O3) and fourth order (O4).  

The position error for x1 and the energy error, defined in 
Equations (21) and (22), have been measured for each 
interpolation method for a span of FR ranging from 1.5 to 100. 
Results can be seen in Figure 7. 
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Figure 7: Errors in the position of x1 (left) and energy (right) for different interpolation techniques as a function of FR, with 

SF (a) and FF (b) strategies. 
 

The performed simulations show that it is not possible to 
find an optimal “general purpose” co-simulation method, even 
for such a simple test problem as the one described in the 
previous Section.  

For FR < 25, slowest-first (SF) integration combined with 
cubic interpolation (O3) shows the best performance, attaining 
good position and energy error levels. The use of higher order 
interpolation polynomials suffers from instabilities, which 
results in the losing of the reference solution, and therefore has 
not helped the reduction of the errors. FF techniques, on the 
other hand, attain very low error levels in the integration of the 
position of x2, as it was expected, because the integration of the 
slow subsystem is performed on the basis of already evaluated 
values of x1; however, this improvement is made at the cost of 
worsening the energy levels and the shape of the time-history 
of x1.  

For 25 < FR < 50, SF integration without interpolation 
(O0) seems to be the most suitable strategy. The use of FF 

strategies in this range of frequency ratios leads to a numerical 
instability that translates into the amplification of the 
oscillations in x1, and can be visualized in Figure 7 as a peak in 
the error graphics around FR = 40. 

For FR > 50, the position errors with SF strategies are 
always over 10% and they follow an upwards trend; among 
them, the use of no interpolation (O0) gives the best results in 
position and energy. On the other hand, FF techniques seem to 
stabilize the position error in this region under 10% with 
reasonable levels of energy errors, at least with O2 and higher 
interpolation degrees. However, the analysis of the position 
history shows that this is a consequence of the attenuation of 
the fast oscillations of the first subsystem, m1. In fact, when FR 
grows to values of 80 and higher, the inverse effect takes place 
and the oscillations are amplified, leading to great errors in 
position and energy. In both cases -amplification and 
attenuation- the results cannot be considered valid, even when 
low error levels in both position and energy are attained. 
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Two consequences can be inferred from the exposed:  
• The errors defined in Equations (21) and (22), and used as 

indicators of the correctness of the solution, are not enough 
for determining the suitability of a co-simulation method for 
solving a particular problem.  

• The use of FF strategies can lead to the rising of numerical 
instabilities, resulting in amplified oscillations in the 
solution of the problem or well, on the contrary, to the 
filtering of small oscillations, with the loss of the 
contribution of the fast frequency ω1 to the solution. 
 
For values of FR > 90, even SF with O0 configuration is 

affected by a sudden growth of the errors and every 
interpolation degree fails completely to follow the analytic 
reference solution. 

The use of smoothing techniques can help the reduction of 
the error for relatively high values of FR, increasing the ability 
of the simulation to track the reference solution. In order to 
attain acceptable results, the polynomial fitting interpolation 
methods for the evaluation of the states of the slow subsystem 
can be substituted with least squares approximations. This can 
help to filter the stiff variations in velocities that arise when the 
difference of time-steps grow. 
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Figure 8: Response to 20 simulation cycles of the fast 

subsystem. a) Slowest-first with O0. b) Fastest-first with 
O3. c) Smoothing with O3. FR = 90. 

A comparison of the co-simulation results can be seen in 
Figure 8. The co-simulated output for variable x1 is compared 
to the analytical solution of the motion (thin continuous line); 
in the upper image no interpolation has been used, in the 
central graphic, O3 interpolation has been used in eval_master 
and eval_slave functions. The lower image shows the better 
accuracy obtained using the smoothing technique for the same 
problem with O3 interpolation in eval_slave function. 
However, it must be noted that smoothing is subject to the same 
filtering or amplifying problems that fastest-first 

implementations suffer. As a consequence, smoothing has only 
shown an acceptable performance for certain combinations of 
FR and the interpolation (or approximation) algorithm used for 
the slow subsystem. 

Regarding to the equivalent model with an algebraic loop, 
depicted in Figure 5, the obtained results have been practically 
equivalent to those of the original model of Figure 3. The use 
of memory blocks has yielded a better performance than the 
equivalent model with delay blocks. 

In most simulations, it has been observed that the 
accumulated error grows as simulation time increments. This is 
not expected to happen in real systems for two reasons. First, 
real systems use to have dissipative elements like dampers that 
soften the effect of small vibrations. In the second place, most 
co-simulated systems include control elements, oriented to 
reference tracking, which make the whole system less sensitive 
to error accumulation. 

 
4 CONCLUSIONS 

Several common requirements for co-simulation involving 
a general-purpose block diagram simulator and an external 
simulation tool have been identified. A multirate co-simulation 
interface for block diagram simulators has been designed and 
assessed on a simple test problem. This interface allows the use 
of different integrators and time scales in each subsystem of the 
whole model. Two co-simulation strategies, fastest-first and 
slowest-first, have been programmed, and several orders of 
interpolation and approximation methods have been 
implemented and compared in order to find the most suitable 
co-simulation configuration as a function of the different time 
scales of the subsystems. Additionally, smoothing techniques 
have also been implemented and tested. 

Results suggest that the configuration of the interface must 
be changed depending on the frequency ratio FR between 
subsystems, in order to attain the best performance. The 
interpolation polynomial degree and the fastest-first/slowest-
first configuration should be adjusted as a function of the most 
critical subsystem, in which lower errors are allowed. In 
general lines, the following conclusions can be pointed: 
• For low frequency ratios (FR < 50), SF is the best co-

simulation strategy. FF can be better for certain values of 
FR, especially for FR > 50, but it is subject to numerical 
problems that can lead to the degeneration of the solution. 

• For FR < 25, cubic interpolation (O3) with SF has yielded 
the best results. In the range 25 < FR < 50, no interpolation 
(O0) with SF is recommended. 

• For FR > 50, energy and position (for the variable x1) errors 
grow up to high levels with every co-simulation strategy. 
The use of smoothing techniques can help the reduction of 
these errors for certain values of FR. 
 
Currently, research is being carried out in order to find a 

suitable indicator of the ability of a co-simulation method to 
simulate a certain problem. Future research is needed for 
extending the range of valid frequency ratios the interface is 
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able to tackle, particularly with the development of techniques 
that overcome the problems that appear for frequency ratios 
over FR = 50. 
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