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ABSTRACT

This paper presents different approaches that can be used for modeling cables in weight–lifting machines.
It is shown that modeling the cable as a linear spring, although very simple and efficient, is energetically
inconsistent and produces spurious terms in the equations of motion if the cable deformation along the
segment in contact with the pulley is not considered. In order to overcome this problem and obtain an
efficient yet accurate method for the simulation of such systems, a semi–analytical method is derived by
introducing an analytical model of the cable–pulley interaction [10] in the system, and the obtained results
are compared to a finite–element numerical model. The semi–analytical model is based on a continuum
mechanics approach of the cable; it assumes Coulomb friction between the pulley and the cable and neglects
the inertia of the segment of cable in contact with the pulley. The numerical model is based on the Absolute
Nodal Coordinate Formulation (ANCF) [13], and accounts for both the inertia forces and the bending and
axial deformation of the cables.
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1 INTRODUCTION

The literature about cable–pulley interaction in weight lifting machines is not very frequent, at least from the
multibody dynamics point of view. However, the interactionbetween belts and pulleys in belt–drives, which
is a very similar problem, has been studied by several authors in the past, such as Leamy and Wasfy [12],
Kerkkanen et al. [11] or Čepon and Boltežar [14].

In the present work, two different approaches for simulating weight lifting machines based on cable–pulley
systems are introduced and compared. The first one is an efficient semi–analytical model, which accounts
for the cable–pulley friction forces and the axial deformation of the segment of cable in contact with the
pulley. The second one uses the Absolute Nodal Coordinate Formulation [13] as done by Kerkkanen et al.,
although it uses a different approach for obtaining the elastic forces [1], and a contact model that is better
suited for the operation conditions of weight lifting machines [3, 8].

2 MODELING CABLES AS LINEAR SPRINGS

Modeling cables as linear springs is very simple and efficient approach that is reasonable in many practical
applications. However when the machine includes cable–pulley mechanisms this approach may be energet-
ically inconsistent and spurious forces may appear in the equations of motion. A simple model is used next
to show these facts. Figure1(a) shows the simple model of an elevator that will be used throughout this
paper. The elevator model consists of a pulley driven by an electrical motor, the cabin and the counterweight
that are connected to the pulley through a cable. Three coordinates are selected to describe the dynamics of
the elevator namely the pulley angleθ, the elongation of the segment of the cable at the cabin sideycab and
the elongation of the segment of the cable at the counterweight sideycw. Assuming that the cable segments
behave as linear springs with variable stiffness, the equations of motion for the elevator yield:

Mq̈+K(θ) = Qgrav +Qelas
nl +Qdriv (1)
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Figure 1. a) simple elevator model. b) quasi–stacic weight lifting

whereM is a constant mass matrix andK is a stiffness matrix that depends on the angleθ rotated by
the pulley due to the change in length of the cable segments. The non–linear elastic force vectorQelas

nl is
the partial derivative of the deformation energy with respect to θ. Qelas

nl contains forces with no physical
meaning. Generalized force vectorsQgrav andQdriv are due to gravity forces and the motor torque,
respectively.

The energy balance of the pulley–cable system when quasi–statically lifting a weight shows that the pre-
viously defined cable model is energetically inconsistent.Figure1(b) shows the initial and final instants.
In both positions the cable is assumed to be in static equilibrium. Assuming the center of the pulley as the
level of zero gravitational energy, the potential energy ofthe system at the initial and final positions, 0 and
1, is given by:

Ui = −mg

(

li +
mg

k(li)

)

+
1

2
k(li)

(

mg
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)2

, i = 0, 1 (2)

wherek(li) = EA/li is the cable instantaneous stiffness. Assuming that the pulley rotates an angleα such
thatl1 − lo = αR, the increase in potential energy of the system is given by:

U1 − U0 = mg
(

1 +
mg

2EA

)

αR (3)

The work delivered by the motor that drives the system from position 0 to position 1 is calculated as the
product of the moment due to the weight times the angle rotated by the pulley, as follows:

W = mgRα (4)

Clearly the principle of work and energy is not fulfilled in this example since:

W 6= U1 − U0; (U1 − U0)−W =
(mg)2

2EA
αR (5)

Therefore some energy is artificially introduced into the system if the deformation energy of the cable
segment in contact with the pulley is not considered. A modelthat accounts for the deformation of the
length of the cable in contact with the pulley is necessary for an energetically consistent cable–pulley model.

3 DEFORMATION MODEL OF THE CABLE

This section describes a deformation model for the cable that accounts for the cable segment in contact with
the pulley. The model is based on the theory of steady motion of belts and pulleys [10]. Figure2 shows the
cable–pulley contact segment, the normal contact stress distributionp(α) and the tangential contact stress
distributiont(α). Assuming that the contact angleα varies form 0 to 180o and the tensile forceT2 is larger
thanT1, the tangential contact stress distributions and the tensile force distribution are given by:

T (α) =

{

T1e
µα α ∈ [0, β]

T2 α ∈ [β, π]
t(α) =

{

µT1

R
eµα α ∈ [0, β]

0 α ∈ [β, π]
(6)
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Figure 2. Contact force distribution at cable–pulley interaction.

whereα ∈ [0, β] is the cable–pulley slip arc andα ∈ [β, π] is the cable–pulley stick arc. The transition
angle is given byβ = 1/µ log(T1/T2), whereµ is the friction coefficient. Unless the tensile forces at both
branches of the cable have the same value, there is always a slip arc in the cable–pulley contact. It is in that
slip arc where the traction torque is transmitted from the pulley to the cables through the tangential contact
stresses. Note that the tangential stresses vanish in the stick arc.
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Figure 3. Cable axial displacement distribution.

In the deformation model it is assumed that the axial displacement due to deformation of any section of
the cable can be obtained as a function of the generalized coordinatesθ, ycab andycw and the arc length
parameters (Figure3) using a piecewise function. In case the tensile force at thecabin segment is larger
than the tensile force at the counterweight segment, the function is given by:

u(s) =








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(7)

This function has been selected such that it respects the tensile force distribution predicted by the theoretical
results. As it can be seen in Figure3, deformation, and therefore tensile force, is constant at the segments
of the cable not in contact with the pulley. The tensile forcegrows exponentially in the slip angle of the
pulley. Substituting the corresponding values at Eq. (7) it can be observed that the elongation of the cable
attached to the cabin (low tension segment) isycab, however, the elongation of the cable attached to the
counterweight (high tension segment) is no longer equal toycw. Therefore, the generalized coordinates
have lost their original meaning.

The selected arc length parameter s has the origin at the entrance of the pulley in the side of the low tension
cable segment. Therefore, the arc length parameter associated with a particular section of the cable is not
constant but varies with time (withθ). Due to this reason, the velocity of the contact sections ofthe cable
due to deformation is given by:

u̇ =
∂u

∂q
q̇+

∂u

∂s
ṡ = uqq̇+ u′Rθ̇ (8)



whereu′ = ∂u/∂s is the cable axial deformation andṡ = Rθ̇ is the rate of change of the parameters for
any cable section. Since any cable section has a superimposed "rigid body velocity"Rθ̇, the kinetic energy
of the cable yields:

Tc =
1

2
ρAc

∫ πR+lcw

−lcab

[

uqq̇+Rθ̇(1 + u′)
]2

ds (9)

whereρAc is the linear density of the cable. The deformation energy ofthe cable and gravitational potential
energy are given by:

Udef
c =

1

2
EAc

∫ πR+lcw

−lcab

(u′)
2
ds (10)

Ugrav
c = ρAcg
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(11)

The kinetic and gravitational energies of the cabin, counterweight and motor–pulley (ccm) are given by:

Tccm =
1

2
mcab u̇

2
∣

∣

s=−lcab

+
1

2
mcw u̇2

∣

∣

s=πR+lcw
+

1

2
Imθ̇2 (12)

Ugrav
ccm = mcabg (u− lcab)|s=−lcab

−mcwg (u+ lcw)|s=πR+lcw
(13)

where the positions and velocities of the cabin and counterweight use the deformation fieldu particularized
at the corresponding values ofs. Finally, the virtual work of the tangential friction stresses between the
cable and the pulley at the slip arc is given by:

δW fric = −

∫ βR

0

t (s) δu ds (14)

whereδu = uqδq + u′Rδθ is the virtual relative displacement between the cable sections and the pulley.
According to Eq. (7), the tangential contact stress can be obtained as follows:

t (s) =
1

R

dT (s)

dα
=

dT (s)

ds
= EAcu

′′ (15)

whereu′′ = ∂2u/∂s2. Substituting Eq. (15) and the expression forδu in Eq. (14) yields:

δW fric = −EAc

∫ βR

o

u′′ (uqδq+ u′Rδθ) ds =
(

Qfric
)T

δq (16)

whereQfric is the vector of generalized friction forces at the slip arc.This vector can be identified at
Eq. (16) as:

Qfric = −

∫ βR

0

EAcu
′′uT

q
ds+
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′′
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

Ru′

0
0



 ds (17)

Using the total kinetic energy of the systemT = Tccm + Tc and the total potential energy of the system
U = Ugrav

ccm +Ugrav
c +Udef

c in Lagrange equations, the following equations of motion are obtained for the
elevator model:

Mq̈ = Qelas +Qgrav +Qfric +Qdriv (18)

whereQelas + Qgrav are the non–linear elastic and gravity forces that result from the partial derivatives of

U with respect to the system coordinates, andQdriv =
[

Mdriv(t) 0 0
]T

is the generalized driving force
beingMdriv(t) the driving torque applied by the motor.

The model previously explained is only valid when the cabin cable is the low tension segment. In case
the counterweight segment becomes the low tension cable, the model and the system equations have to be
changed by the alternative ones that are obtained accordingly.



4 DESCRIPTION OF THE ANCF BEAM ELEMENT

The absolute nodal coordinate formulation (ANCF) is a finite–element formulation specially designed for
multibody system dynamics [13]. This is because the ANCF uses absolute positions and global slopes as
nodal coordinates, thus eliminating the interpolation of finite rotations. The shape functions contain a full
set of rigid–body deformation modes, so that finite elementscan undergo large displacements and rotations
without introducing spurious forces.

The total number of finite elements used for the cable discretization depends on the number of elements that
are necessary for modeling the contact with the pulley. Using a large number of elements for the contact
arc would allow for using a linear elastic forces formulation, but since the same element size must be kept
along the total length of the cable, it would lead to a very large number of variables.

In order to overcome this problem, a nonlinear formulation based on continuum mechanics is used for mod-
eling the elastic forces, more specifically a large–deformation planar beam element described by Berzeri
and Shabana [1]. In this formulation, the effects of rotary inertia and shear strain are ignored, thus assuming
the cross–sections to remain plane and perpendicular to theneutral axis. However, as opposed to other
ANCF elements that use a floating reference frame to model theelastic forces [4], this formulation accounts
for the nonlinearities due to large deformations, so that a smaller number of elements can be used for the
discretization.

4.1 Kinematics

The position of an arbitrary point at the neutral axis of a finite element,r, can be calculated by means of an
interpolation matrix,S, which, for a given element lengthl, depends on the material coordinate along the
neutral axis in the undeformed configuration,x,

r(e, x) = S(x)e (19)

The vectore is the vector of nodal variables, and it contains the absolute positions of the end nodes, along
with their derivatives with respect to the material coordinatex, also known asglobal slopes,
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The matrixS is formed by a set of interpolation functions,si, arranged according to the following strutcure,

S =

[

s1 0 s2l 0 s3 0 s4l 0
0 s1 0 s2l 0 s3 0 s4l

]

(21)

Thesesi functions can be written in terms of a non–dimensional parameterξ = x/l,

s1 = 1− 3ξ2 + 2ξ3, s2 = ξ − 2ξ2 + ξ3, s3 = 3ξ2 − 2ξ3, s4 = ξ3 − ξ2 (22)

It can be demonstrated that these shape functions contain a complete set of rigid–body modes, enabling the
ANCF elements to be used in any large displacement and rotation applications such as that addressed in this
paper.

4.2 Elastic forces

The neutral axis of a finite element, for any given position and deformation state defined by its vector of
nodal coordinatese, can be represented as a parametric curver = r(x). Since the cross–sections are
assumed to remain plane and perpendicular to the neutral axis, its equation completely defines the stress
and strain distributions along the finite element.

If the Green–Lagrange longitudinal strainεl and the curvatureκ are obtained from the parametric equations
of the neutral axis, the total strain energy can be calculated as,

U =
1

2

∫ l

0

[

EAε2l + EIκ2
]

dx (23)



whereA is the cross–sectional area,I is the second moment of area of the cross section, andE is the
Young’s modulus of the material. A cable does not have the bending stiffnes corresponding to a beam with
its same cross–sectional area and, in order to simulate thisbehavior, a reduction factor of 25 is applied to
the second moment of areaI. By using the expression of the strain energy shown in Eq. (23), one can obtain
the elastic forces as,

Qe = −

(

∂U

∂e

)T

(24)

Depending on the level of simplification applied to the longitudinal strain and the curvature, several longi-
tudinal and transversal force models are derived in [1]. In the present work, the most complete models L2
and T2 described in the referred article are used, due to the large deformations that appear in the contact
with the pulley.

5 CABLE–PULLEY CONTACT MODEL

5.1 Distributed contact forces

The contact forces at the cable–pulley interface are distributed along the length of the contact arc. Thus, the
generalized contact forces acting on any given element are the result of integrating these distributed forces
fc along its lengthli,

Qc =

∫ li

0

fc(x)
TS(x) dx =

∫ 1

0

fc(ξ)
TS(ξ)li dξ (25)

The symbolic evaluation of this integral would require the contact forces to be expressed as a function of
the material coordinateξ. Rather than evaluating the full integral, a Gauss–Legendre quadrature is used for
obtaining the generalized contact forces [11], so that the forces are only evaluated at several certain points
ξi along the element. For ann–point quadrature, the approximated integral remains,

Qc ≃

n
∑

i=1

wif
T
ciSili (26)

wherefTci andSi are the contact forces per unit length and the interpolationmatrices, evaluated at the
corresponding Gauss–Legendre integration pointsξi, andwi are the Gauss–Legendre quadrature weights.

5.2 Variables defined at a contact point

Figure 4 is used to show the variables defined in order to calculate thecontact forces. When a certain
point of the cable,p, denoted as thecontact point, makes its first contact with the pulley, the corresponding
point of the pulley,pst, whose absolute position initially coincides with that ofp, is denoted as thestiction
point. As the time integration goes on, these two points might no longer be coincident, since the stiction
point moves rigidly attached to the pulley, whereas the contact point moves along with the cable. Both the
stiction point and the contact point are uniquely defined by their corresponding polar anglesθst andθ, as
shown in the Figure. A radial position vector can be defined ateach point of the neutral axis of the cable,
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Figure 4. Normal and tangential contact model.



such that,
rr = r− r0 (27)

wherer0 is the absolute position of the center of the pulley. This vector enables to define a pair of or-
thonormal vectors,n andt, which are respectively normal and tangent to the pulley surface at the contact
point, and will determine the directions of both the normal and the tangential contact forces. The radial
penetration orindentation, d, and the tangential displacement with respect to the stiction point orcreep, s,
can be obtained as,

d = R− |rr| , s = R (θ − θst) (28)

whereR is the pulley radius. Their respective time derivatives areobtained by simply projecting the absolute
velocity inton andt respectively, taking into account that the pulley rotates with an angular velocityω for
calculating the creep ratės,

ḋ = ṙTn, ṡ = ṙTt− ωR (29)

5.3 Normal force model

The normal force per unit lengthfn is introduced by means of the Hunt–Crossley contact model. The Hunt–
Crossley contact model states that the normal contact forcecan be represented as a spring–damper pair with
nonlinear damping, according to the following expression,

fn = knd
n
(

1 +Dḋ
)

n (30)

In this equation,kn is the normal stiffness per unit length, andD is a damping factor. The exponentn
depends on the geometry and, according to Hertz contact theory [5, 9], a value between 1 and 1.5 should be
acceptable for cylinder–cylinder and cylinder–plane contacts, so that the value chosen for the cable–pulley
contact isn =1. The value ofD must be chosen so that1 +Dḋ never becomes negative for the velocities
appearing along the simulation since, otherwise, the normal force could pull the cable towards the pulley,
which has no physical meaning.

5.4 Tangential force model

The Rooney and Deravi creep–rate–dependent friction law [5], which has been previously used for modeling
belt–drives [11, 12], is no longer valid in the particular case studied in this paper, since the tangential force
voids whenever no relative tangential velocity exists. Therefore, the creep–rate–dependent friction law fails
to converge in the calculation of the initial static equilibrium, in the general case of the weights of the cabin
and the counterweight being different.

In order to overcome this problem, the friction model implemented in the present work should be able to
introduce force even when the relative tangential velocityis zero. This is achieved by modeling the frictional
force ft with a bristle contact model for low creep rates, whereas classic Coulomb dry friction is used for
higher creep rates [3, 8]. This implies that two separate tangential force models are defined,

ft =

{

fst ṡ ≤ vst
fsl ṡ > vst

(31)

wherefst stands for the stiction force per unit length,fsl for the sliding force per unit length, andvst is the
transition relative velocity at which the switching between models occur. In order to make the model more
numerically friendly, the transition between both models is made through a smooth functionκ,

ft = κfst + (1− κ) fsl (32)

beingκ a function ofṡ that quickly decreases from 1 to 0 aroundvst, such as

κ = e−(ṡ/vst)
2

(33)

The force in the lower velocity range is assumed to behave as abrush bristle, in such a way that the relative
displacements represents the deflection at the tip of the bristle, as depicted in Figure4. Therefore, the
tangential force can be modeled as a linear spring–damper pair in the tangential direction,

fst = − (kbs+ cbṡ) t (34)



The force is not allowed to be higher than a saturation value,determined by Coulomb’s friction law,

fsat = µsfn (35)

whereµs is the static friction coefficient, which is usually higher than the dynamic one. If the norm of
the force obtained by using Eq. (34) exceeds the saturation value, the norm offst becomesfsat, and the
position of the stiction point is updated for making it correspond to the bristle deflection associated to the
saturation force,

fst = − sgn (s) fsatt (36)

θst = θ − sgn (s) ηst
fsat
kbR

(37)

The functionsgn(s) outputs1 if s is equal or higher than zero, and−1 otherwise, andηst is a factor that
can improve the numerical behavior, representing the amount of bristle deflection in the saturation state. In
the present work, a value of 1 is used for this parameter.

The tangential force for higher creep rates is calculated bymeans of a pure Coulomb’s friction law, using in
this case the dynamic friction coefficientµd,

fsl = − sgn (ṡ)µdfnt (38)

When the creep rate is higher than the transition velocityvst, this is the dominant friction model. However,
fst is still being evaluated, so that the stiction point is correctly updated in case the stiction force reaches its
saturation value.

6 NUMERICAL RESULTS

In order to compare both models, a simple elevator model consisting of a cabin and a counterweight is used.
The model parameters are those shown in Table1.

Parameter Symbol Value Parameter Symbol Value

Pulley radius R 0,3 m Normal contact stiffness kn 1, 5 · 107 N/m2

Pulley center height H 20 m Normal damping factor D 10 s/m
Initial cabin height hi 16,5 m Stick–slip transition velocity vst 10

−4 m/s
Final cabin height hf 19,5 m Bristle stiffness kb 5 · 10

6 N/m2

Undeformed cable length L 5 m Bristle viscous damping cb 10
3 Ns/m2

Cable diameter φ 10 mm Dynamic friction coeff. µd 0,7
Number of cables n 5 Static friction coeff. µs 0,7
Young’s modulus E 10

5 MPa Cabin mass mcab 1000 Kg
Cable density ρ 5095 Kg/m3 Counterweight mass mcw 600 Kg
Motor inertia Im 0,5 Kg m2

Table 1. Parameters of the elevator model.

The ANCF model is discretized such that the contact arc is divided into 32 elements, thus making a total
of 170 finite elements. The model works even with 3 elements per half pulley, but when the elements are
long the transition elements, i.e. those that are entering or leaving the pulley, do not adapt well to the
pulley curvature, leading to the introduction of a large–amplitude spurious vibration of the cabin, whose
frequency is equal to the number of elements that enter the pulley per second. This problem is mainly
due to two factors, namely the limitations of using third–order polynomials as shape functions, and the
absence of shear deformations [7]. The second problem is probably the most relevant, since Kerkkanen et
al., whose model includes shear deformation –at the cost of increasing the number of variables per node–,
report no issues with numbers as low as 4 elements per half pulley. Therefore, the elimination of the shear
deformation does not actually improve the efficiency since the number of finite elements must be increased
by a large amount.



The maneuver starts at an equilibrium position with the cabin placed athi = 16, 5 m. In order to lift the
cabin up to a final height of 19,5 m, the following law is used for the guidance of the pulley:

ω̈ =























1/R 0 ≤ t < 1
−1/R 1 ≤ t < 2
0 2 ≤ t < 3
−1/R 3 ≤ t < 4
1/R 4 ≤ t ≤ 5

(39)

where the angular jerk̈ω is expressed in rad/s3 and timet is expressed in seconds.

Figure5 shows in the two upper plots the vertical vibrations of the cabin, which correspond toycab andẏcab
in the semi–analytical model. It is observed that the elongation decreases with the cable length in the semi–
analytical model, as expected since the stiffness is inversely proportional to the cable length. In the ANCF
model the elongation is roughly constant because there exists a small amount of slip that compensates
for this effect. Actually, the elongation calculated in theANCF model is no longer an elongation but a
difference between where the cabin is and where it would be incase of an non–deformable cable without
slip. In the velocity graph, it is observed that the amplitude of oscillation is much smaller in the ANCF
model; this happens due to the fact that the semi–analyticalmodel has no damping, whereas the ANCF
model introduces damping in the contact and, moreover, it needs a small amount of numerical dissipation
added via a Newmark integrator [2].
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Figure 5. Simulation results.

In the lower graphs of Figure5 the motor torque and the instantaneous power dissipated by the friction
forces are plotted. In the case of the motor torque the agreement between both plots is very good. The
dissipated power shows a reasonable agreement, but it is sensitive to the contact parameters so that the
results are not conclusive. Anyway, the maximum power lies always anywhere between 0,5 and 1,5 kW, so
the order of magnitude of the friction forces is not very different. It is observed that the friction power is
not equal to zero at the end of the simulation in the ANCF model. This happens because when the pulley
stops, the cable keeps sliding with a decreasing velocity, so that it is not completely static att = 5s. In what
respects the distribution of contact forces, the results are very similar to those obtained by Kerkkanen et al.

7 CONCLUSIONS

The semi–analytical model shows a very good behavior, beinga very fast and accurate method for simulat-
ing weight lifting machines. The main drawbacks of this model are that it is an ad–hoc model for a specific



configuration, and it does not account for a possible cable slip. On the other hand, the ANCF model is a very
general and robust method for modeling the cable–pulley interaction, although it cannot correctly model the
curvature of the transition elements, leading to higher numbers of finite elements that ultimately mean less
performance than with shear–deformation–capable elements as done by Kerkkanen et al. Moreover, internal
damping should be added to the cable [6], in order to avoid the artificial introduction of numericaldamping
into the integrator.
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