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ABSTRACT

This paper presents different approaches that can be usetbfteling cables in weight-lifting machines.
It is shown that modeling the cable as a linear spring, atfhotery simple and efficient, is energetically
inconsistent and produces spurious terms in the equatibnwtion if the cable deformation along the
segment in contact with the pulley is not considered. In otdeovercome this problem and obtain an
efficient yet accurate method for the simulation of sucheyst a semi—analytical method is derived by
introducing an analytical model of the cable—pulley intgi@n [10] in the system, and the obtained results
are compared to a finite—element numerical model. The semalytical model is based on a continuum
mechanics approach of the cable; it assumes Coulomb fribBoween the pulley and the cable and neglects
the inertia of the segment of cable in contact with the pulldye numerical model is based on the Absolute
Nodal Coordinate Formulation (ANCFL8], and accounts for both the inertia forces and the bending an
axial deformation of the cables.
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1 INTRODUCTION

The literature about cable—pulley interaction in weighirig machines is not very frequent, at least from the
multibody dynamics point of view. However, the interactlmtween belts and pulleys in belt—drives, which
is a very similar problem, has been studied by several asithahe past, such as Leamy and Wasfg][
Kerkkanen et al.11] or éepon and Boltezad f].

In the present work, two different approaches for simugatireight lifting machines based on cable—pulley
systems are introduced and compared. The first one is areeff@emi—analytical model, which accounts
for the cable—pulley friction forces and the axial deforimatof the segment of cable in contact with the
pulley. The second one uses the Absolute Nodal CoordinatalHation [L3] as done by Kerkkanen et al.,
although it uses a different approach for obtaining thetieldésrces [L], and a contact model that is better
suited for the operation conditions of weight lifting maoés B, 8].

2 MODELING CABLES AS LINEAR SPRINGS

Modeling cables as linear springs is very simple and efft@@proach that is reasonable in many practical
applications. However when the machine includes cabléeypaiechanisms this approach may be energet-
ically inconsistent and spurious forces may appear in thiatons of motion. A simple model is used next
to show these facts. Figud€a) shows the simple model of an elevator that will be useduttnout this
paper. The elevator model consists of a pulley driven by ectetal motor, the cabin and the counterweight
that are connected to the pulley through a cable. Three owias are selected to describe the dynamics of
the elevator namely the pulley anglethe elongation of the segment of the cable at the cabimsigeand

the elongation of the segment of the cable at the countehtvsidey...,. Assuming that the cable segments
behave as linear springs with variable stiffness, the égpsmbf motion for the elevator yield:

Mq + K(@) = QI + leas + eriv )
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Figure 1. a) simple elevator model. b) quasi—stacic weight lifting

whereM is a constant mass matrix ad€l is a stiffness matrix that depends on the angletated by
the pulley due to the change in length of the cable segmettts.n@n—linear elastic force vect@¢y* is
the partial derivative of the deformation energy with restgge 6. Q¢}** contains forces with no physical

meaning. Generalized force vecta®/"** and Q""" are due to gravity forces and the motor torque,
respectively.

The energy balance of the pulley—cable system when quasgaly lifting a weight shows that the pre-
viously defined cable model is energetically inconsistéigure 1(b) shows the initial and final instants.
In both positions the cable is assumed to be in static equifih Assuming the center of the pulley as the
level of zero gravitational energy, the potential energthefsystem at the initial and final positions, 0 and

1, is given hy:
2
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wherek(l;) = EA/l; is the cable instantaneous stiffness. Assuming that tHeyprdtates an angle such
thatl; — [, = aR, the increase in potential energy of the system is given by:

Uy Uo—mg(1—|—2EA)ozR 3)
The work delivered by the motor that drives the system fromitimn O to position 1 is calculated as the
product of the moment due to the weight times the angle rdtayehe pulley, as follows:

W = mgRa 4)
Clearly the principle of work and energy is not fulfilled inglexample since:
(mg)?
2EA

Therefore some energy is artificially introduced into theteyn if the deformation energy of the cable
segment in contact with the pulley is not considered. A makat accounts for the deformation of the
length of the cable in contact with the pulley is necessaraificenergetically consistent cable—pulley model.

W #U —Uy (U—Uy)—-W=

aR (5)

3 DEFORMATION MODEL OF THE CABLE

This section describes a deformation model for the cableait@ounts for the cable segment in contact with
the pulley. The model is based on the theory of steady mofitielts and pulleys]0]. Figure2 shows the
cable—pulley contact segment, the normal contact stresshditionp(«) and the tangential contact stress
distributiont(«). Assuming that the contact anglevaries form 0 to 189and the tensile forc& is larger
thanT1, the tangential contact stress distributions and theltefaice distribution are given by:
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Figure 2. Contact force distribution at cable—pulley interaction.

wherea € [0, 3] is the cable—pulley slip arc and € [3, 7| is the cable—pulley stick arc. The transition
angle is given byd = 1/ulog(T1/T»), wherey is the friction coefficient. Unless the tensile forces atbot
branches of the cable have the same value, there is alwaipsaacsin the cable—pulley contact. It is in that
slip arc where the traction torque is transmitted from thiéeguo the cables through the tangential contact
stresses. Note that the tangential stresses vanish intckest.
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Figure 3. Cable axial displacement distribution.

In the deformation model it is assumed that the axial diggtaent due to deformation of any section of
the cable can be obtained as a function of the generalizedlioatesd, v.., andy..,, and the arc length
parameter (Figure3) using a piecewise function. In case the tensile force at#ien segment is larger
than the tensile force at the counterweight segment, thetibmis given by:
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This function has been selected such that it respects thidetéorce distribution predicted by the theoretical
results. As it can be seen in FiguBedeformation, and therefore tensile force, is constarti@segments

of the cable not in contact with the pulley. The tensile fogcews exponentially in the slip angle of the
pulley. Substituting the corresponding values at Ejjit(can be observed that the elongation of the cable
attached to the cabin (low tension segment) g, however, the elongation of the cable attached to the
counterweight (high tension segment) is no longer equal.to Therefore, the generalized coordinates
have lost their original meaning.

The selected arc length parameter s has the origin at theneetof the pulley in the side of the low tension
cable segment. Therefore, the arc length parameter atsbevith a particular section of the cable is not
constant but varies with time (with). Due to this reason, the velocity of the contact sectiorthefcable
due to deformation is given by: 5
. u
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whereu’ = du/Js is the cable axial deformation ard= R# is the rate of change of the parameteor
any cable section. Since any cable section has a superichjxégiel body velocity” R, the kinetic energy
of the cable yields:

1 TR+lcw ) 2

T. = 5pAc/ [uqq + RO(1 + u’)} ds 9)
7lcab

wherepA. is the linear density of the cable. The deformation energh®table and gravitational potential

energy are given by:

def 1 rhten
Ul = -FA, (u")” ds (20)
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The kinetic and gravitational energies of the cabin, couvgeht and motor—pulley (ccm) are given by:
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where the positions and velocities of the cabin and courgigiht use the deformation fieldparticularized
at the corresponding values of Finally, the virtual work of the tangential friction stees between the
cable and the pulley at the slip arc is given by:

. AR
swirie = — / t(s)duds (14)
0
wheredu = uqdq + ' R46 is the virtual relative displacement between the cabld@esand the pulley.

According to Eq. 7), the tangential contact stress can be obtained as follows:

_1dT(s) dT(s) .
(s) = R de = ds = EA.u (15)

whereu”” = 9%u/0s?. Substituting Eq.15) and the expression fa in Eq. (14) yields:
. BR T
SWITe = —EA, / u" (uqdq + ' Ro6) ds = (Q'*) " dq (16)

where Q7" is the vector of generalized friction forces at the slip afithis vector can be identified at
Eq. (16) as:
BR BR R’
Qfrie = — / EAcu”ug ds + / EA" | 0 | ds a7
Jo 0 0

Using the total kinetic energy of the systéih= T..,, + 1. and the total potential energy of the system
U = Ugrav + ygrev + Udel in Lagrange equations, the following equations of motienabtained for the

elevator model:
Mq _ Qelas + Qgrav + eric + eriv (18)
whereQ¢!*s + Q97 are the non-linear elastic and gravity forces that resoihfthe partial derivatives of

U with respect to the system coordinates, &fti” = [M(t) 0 O]T is the generalized driving force
being M (t) the driving torque applied by the motor.

The model previously explained is only valid when the calable is the low tension segment. In case
the counterweight segment becomes the low tension calelentdidel and the system equations have to be
changed by the alternative ones that are obtained accéyding



4 DESCRIPTION OF THE ANCF BEAM ELEMENT

The absolute nodal coordinate formulation (ANCF) is a firlement formulation specially designed for
multibody system dynamicd 8]. This is because the ANCF uses absolute positions and Igtdjzes as
nodal coordinates, thus eliminating the interpolation it rotations. The shape functions contain a full
set of rigid—body deformation modes, so that finite elemeatsundergo large displacements and rotations
without introducing spurious forces.

The total number of finite elements used for the cable digetdn depends on the number of elements that
are necessary for modeling the contact with the pulley. @simarge number of elements for the contact
arc would allow for using a linear elastic forces formulatibut since the same element size must be kept
along the total length of the cable, it would lead to a vergdanumber of variables.

In order to overcome this problem, a nonlinear formulatiasdsl on continuum mechanics is used for mod-
eling the elastic forces, more specifically a large—defdionaplanar beam element described by Berzeri
and Shabandl]. In this formulation, the effects of rotary inertia and ahstrain are ignored, thus assuming
the cross—sections to remain plane and perpendicular toghtal axis. However, as opposed to other
ANCF elements that use a floating reference frame to modelléstic forces4], this formulation accounts
for the nonlinearities due to large deformations, so thahaller number of elements can be used for the
discretization.

4.1 Kinematics

The position of an arbitrary point at the neutral axis of aéilementy, can be calculated by means of an
interpolation matrix S, which, for a given element length depends on the material coordinate along the
neutral axis in the undeformed configuratian,

r(e,z) = S(z)e (29)

The vectore is the vector of nodal variables, and it contains the absglositions of the end nodes, along
with their derivatives with respect to the material cooedé, also known agjlobal slopes,
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The matrixS is formed by a set of interpolation functions, arranged according to the following strutcure,

(20)

=l

|5 0 Sgl 0 S3 0 S4l 0
S= |:0 S1 0 821 0 S3 0 S4l (21)
Theses; functions can be written in terms of a non—dimensional patany = x/I,
s1=1-32 426, sy =6-22+6, 53=32-28 s5,=6-¢ (22)

It can be demonstrated that these shape functions contaimplete set of rigid—body modes, enabling the
ANCF elements to be used in any large displacement andaptafiplications such as that addressed in this
paper.

4.2 Elastic forces

The neutral axis of a finite element, for any given positiod deformation state defined by its vector of
nodal coordinateg, can be represented as a parametric curve r(z). Since the cross—sections are
assumed to remain plane and perpendicular to the neutigl itskiequation completely defines the stress
and strain distributions along the finite element.

If the Green—Lagrange longitudinal strainand the curvature are obtained from the parametric equations
of the neutral axis, the total strain energy can be calcdlase

1 l
U= / [EAS? + EIR?) dz (23)
0



where A is the cross—sectional areh,s the second moment of area of the cross section, fansl the
Young’s modulus of the material. A cable does not have thelingrstiffnes corresponding to a beam with
its same cross—sectional area and, in order to simulatédhiavior, a reduction factor of 25 is applied to
the second moment of aréaBy using the expression of the strain energy shown in E8), bne can obtain

the elastic forces as, .

ou

Qe =-— (3) (24)
e

Depending on the level of simplification applied to the ldadinal strain and the curvature, several longi-
tudinal and transversal force models are derived]nln the present work, the most complete models L2
and T2 described in the referred article are used, due taatige deformations that appear in the contact
with the pulley.

5 CABLE-PULLEY CONTACT MODEL
5.1 Distributed contact forces

The contact forces at the cable—pulley interface are biget along the length of the contact arc. Thus, the
generalized contact forces acting on any given elementharessult of integrating these distributed forces
f. along its length,,

l; 1
= X T X xTr = . T 9
Q.- / £,(2)7S () d / £.(6)TS(E)l: de (25)

The symbolic evaluation of this integral would require tlomtact forces to be expressed as a function of
the material coordinate Rather than evaluating the full integral, a Gauss—Legegdedrature is used for
obtaining the generalized contact forc&g][ so that the forces are only evaluated at several certaitgo
& along the element. For ar-point quadrature, the approximated integral remains,

Q. ~ > wiflSil; (26)
i=1

wherefZ andS; are the contact forces per unit length and the interpolatiatrices, evaluated at the
corresponding Gauss—Legendre integration pagintandw; are the Gauss—Legendre quadrature weights.

5.2 Variables defined at a contact point

Figure4 is used to show the variables defined in order to calculatedmact forces. When a certain
point of the cablep, denoted as theontact point, makes its first contact with the pulley, the corresponding
point of the pulleyp,;, whose absolute position initially coincides with thatpofs denoted as thaiction
point. As the time integration goes on, these two points might mgéo be coincident, since the stiction
point moves rigidly attached to the pulley, whereas the aamntoint moves along with the cable. Both the
stiction point and the contact point are uniquely definedh®gjrtcorresponding polar anglés, andd, as
shown in the Figure. A radial position vector can be defineglah point of the neutral axis of the cable,
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Figure 4. Normal and tangential contact model.



such that,
r.=r—ry 27)
wherer is the absolute position of the center of the pulley. Thisteeenables to define a pair of or-
thonormal vectorsn andt, which are respectively normal and tangent to the pullejaserat the contact
point, and will determine the directions of both the nornvadl dhe tangential contact forces. The radial
penetration orndentation, d, and the tangential displacement with respect to the atigibint orcreep, s,
can be obtained as,
d=R-—|r.|, s=R(0—0y) (28)
whereR is the pulley radius. Their respective time derivativesadotained by simply projecting the absolute
velocity inton andt respectively, taking into account that the pulley rotatés an angular velocityw for
calculating the creep ratg
d=i"n, §=1"t—wR (29)

5.3 Normal force model

The normal force per unit length is introduced by means of the Hunt—Crossley contact mode. Hunt—
Crossley contact model states that the normal contact &@cde represented as a spring—damper pair with
nonlinear damping, according to the following expression,

Q:MWO+D@n (30)

In this equationf,, is the normal stiffness per unit length, afdlis a damping factor. The exponent
depends on the geometry and, according to Hertz contaatytfig®], a value between 1 and 1.5 should be
acceptable for cylinder—cylinder and cylinder—plane aot#, so that the value chosen for the cable—pulley
contact isn =1. The value ofD must be chosen so that+ Dd never becomes negative for the velocities
appearing along the simulation since, otherwise, the nioionee could pull the cable towards the pulley,
which has no physical meaning.

5.4 Tangential force model

The Rooney and Deravi creep—rate—dependent frictiondwvhich has been previously used for modeling
belt—drives L1, 12], is no longer valid in the particular case studied in thipgrasince the tangential force
voids whenever no relative tangential velocity exists. rEfare, the creep—rate—dependent friction law fails
to converge in the calculation of the initial static equililm, in the general case of the weights of the cabin
and the counterweight being different.

In order to overcome this problem, the friction model impéarted in the present work should be able to
introduce force even when the relative tangential veldsiaero. This is achieved by modeling the frictional
force f; with a bristle contact model for low creep rates, whereassitaCoulomb dry friction is used for
higher creep rateg[ 8]. This implies that two separate tangential force modetsifined,

. fst 5 S Ust
ft - { fsl 5> Vst (31)

wheref,; stands for the stiction force per unit lengfl, for the sliding force per unit length, and; is the
transition relative velocity at which the switching betwewodels occur. In order to make the model more
numerically friendly, the transition between both modslmiade through a smooth functien

ft = K/fst + (]. — /i) fsl (32)
beingx a function ofs that quickly decreases from 1 to 0 aroung, such as

K = e_(‘é/vst)2 (33)

The force in the lower velocity range is assumed to behavebassh bristle, in such a way that the relative
displacement represents the deflection at the tip of the bristle, as degint Figure4. Therefore, the
tangential force can be modeled as a linear spring—damjrenghe tangential direction,

foo=—(kps+ )t (34)



The force is not allowed to be higher than a saturation valegsrmined by Coulomb’s friction law,

fsat = Ms fn (35)

where i is the static friction coefficient, which is usually highéah the dynamic one. If the norm of
the force obtained by using Eq34) exceeds the saturation value, the nornfgfbecomesy,,;, and the
position of the stiction point is updated for making it capend to the bristle deflection associated to the
saturation force,

fst = —sgn (S) fsatt (36)
(37)

The functionsgn(s) outputsl if s is equal or higher than zero, andl otherwise, andy,; is a factor that
can improve the numerical behavior, representing the ataflristle deflection in the saturation state. In
the present work, a value of 1 is used for this parameter.

The tangential force for higher creep rates is calculateshesins of a pure Coulomb’s friction law, using in
this case the dynamic friction coefficien,

i1 = —sgn (3) jrafut (38)

When the creep rate is higher than the transition velagitythis is the dominant friction model. However,
f,; is still being evaluated, so that the stiction point is cotiseupdated in case the stiction force reaches its
saturation value.

6 NUMERICAL RESULTS

In order to compare both models, a simple elevator modelistmg of a cabin and a counterweight is used.
The model parameters are those shown in Table

Parameter Symbol  Value Parameter Symbol  Value
Pulley radius R 0,3m Normal contact stiffness kn 1,5-107 N/m?
Pulley center height H 20m Normal damping factor D 10 s/m
Initial cabin height hi 16,5m Stick—slip transition velocity v 10~* m/s
Final cabin height hy 19,5m Bristle stiffness ky 5-10% N/m?
Undeformed cable length L 5m Bristle viscous damping Cp 103 Ns/m?
Cable diameter 10} 10 mm Dynamic friction coeff. I 0,7
Number of cables n 5 Static friction coeff. s 0,7

Young’s modulus E 10° MPa Cabin mass Meab 1000 Kg
Cable density p 5095 Kg/m¥  Counterweight mass Mew 600 Kg
Motor inertia Im 0,5 Kg n?

Table 1. Parameters of the elevator model.

The ANCF model is discretized such that the contact arc igléiinto 32 elements, thus making a total
of 170 finite elements. The model works even with 3 element$hak pulley, but when the elements are
long the transition elements, i.e. those that are enterinigaving the pulley, do not adapt well to the
pulley curvature, leading to the introduction of a largepétade spurious vibration of the cabin, whose
frequency is equal to the number of elements that enter theypper second. This problem is mainly
due to two factors, namely the limitations of using thirdder polynomials as shape functions, and the
absence of shear deformation$.[The second problem is probably the most relevant, sinc&kémen et
al., whose model includes shear deformation —at the costcogasing the number of variables per node—,
report no issues with numbers as low as 4 elements per hadypdiherefore, the elimination of the shear
deformation does not actually improve the efficiency sitneertumber of finite elements must be increased
by a large amount.



The maneuver starts at an equilibrium position with the mgtéced atr;, = 16,5 m. In order to lift the
cabin up to a final height of 19,5 m, the following law is usedtfee guidance of the pulley:

/R 0<t<l1
~1/R 1<t<?2
o=4{0 2<t<3 (39)
—-1/R 3<t<4
1/R  4<t<5

where the angular jerk is expressed in rad/sind timet is expressed in seconds.

Figure5 shows in the two upper plots the vertical vibrations of thigicawhich correspond t9...;, andy..s

in the semi—analytical model. It is observed that the eltingalecreases with the cable length in the semi—
analytical model, as expected since the stiffness is ielepgoportional to the cable length. In the ANCF
model the elongation is roughly constant because therésexismall amount of slip that compensates
for this effect. Actually, the elongation calculated in tABICF model is no longer an elongation but a
difference between where the cabin is and where it would lmage of an non—deformable cable without
slip. In the velocity graph, it is observed that the amplguwaf oscillation is much smaller in the ANCF
model; this happens due to the fact that the semi—analyticalel has no damping, whereas the ANCF
model introduces damping in the contact and, moreoverdtis@ small amount of numerical dissipation
added via a Newmark integratd®]|
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Figure 5. Simulation results.

In the lower graphs of Figurb the motor torque and the instantaneous power dissipatetdebfrittion
forces are plotted. In the case of the motor torque the agreebetween both plots is very good. The
dissipated power shows a reasonable agreement, but it s#tigerio the contact parameters so that the
results are not conclusive. Anyway, the maximum power lieggs anywhere between 0,5 and 1,5 kW, so
the order of magnitude of the friction forces is not very @iéint. It is observed that the friction power is
not equal to zero at the end of the simulation in the ANCF modibls happens because when the pulley
stops, the cable keeps sliding with a decreasing veloditthat it is not completely static &t= 5s. In what
respects the distribution of contact forces, the resuésary similar to those obtained by Kerkkanen et al.

7 CONCLUSIONS

The semi—analytical model shows a very good behavior, beewveyy fast and accurate method for simulat-
ing weight lifting machines. The main drawbacks of this made that it is an ad—hoc model for a specific



configuration, and it does not account for a possible calge®h the other hand, the ANCF model is a very
general and robust method for modeling the cable—pull&yaation, although it cannot correctly model the
curvature of the transition elements, leading to higher lpens of finite elements that ultimately mean less
performance than with shear—deformation—capable elenasrdone by Kerkkanen et al. Moreover, internal
damping should be added to the calfig [n order to avoid the artificial introduction of numericdmping
into the integrator.
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