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ABSTRACT

Computational efficiency of the dynamics of large constrained multibody systems is essential in many areas
of computer aided engineering and design. There are many examples of such systems in various disciplines.
The involved applications include robots, vehicles, biomechanical systems and other interdisciplinary sys-
tems. Moreover, some applications like hardware-in-the-loop or human-in-the-loop devices are developed
by applying real-time simulations. Parallel computing is one of the approaches to increase the computa-
tional efficiency of multibody simulations. This paper presents a new parallel formulation for real-time
multibody dynamics simulations. The proposed method adopts a divide and conquer scheme. Initially,
the parallel algorithm is formulated by using classical index-3 Lagrangian approach with trapezoidal rule
as a numerical integrator. Subsequently, index-3 augmented Lagrangian formulations with projections are
adopted to generalize the algorithm and make it more robust in case of Jacobian matrix rank deficiencies,
which may occur in analysing complex systems. The performance results indiciate that real-time computa-
tions can be achieved for multibody systems with 128 DOF for three processors used, keeping the constraint
errors under control.

Keywords: divide and conquer algorithm, augmented Lagrangian formulation with projections, real-time
simulation, parallel computing.

1 INTRODUCTION

Multibody dynamics simulations can be carried out by means of different types of formulations. To meet
requirements for high-fidelity performance and accurate dynamics simulations of complex systems, it has
become a practice to apply efficient, low order algorithms designed both for sequential and parallel com-
putations. The earliest examples of recursive sequential algorithms for analysis of rigid body dynamics can
be found in [1], [3], [4], [13], [20], [26] and [27]. They gave the basis for further development of efficient
low order formulations. As parallel computing resources became more available, researchers began to par-
allelize the existing formulations or design completely new algorithms, suitable for parallel computing. The
strategies enabled to decrease the turnaround time associated with computer simulations and even achieve
results in real-time. The first attempts to exploit parallel strategies can be found in [5], [7], [17], [18],
[21]. More recent ideas regarding parallel algorithms for rigid multibody dynamics simulation come from
Featherstone and Anderson’s works. Featherstone [14], [15] and [16] developed the optimal-time divide
and conquer algorithm (DCA) for dynamics of general multibody systems. The idea behind the formulation
lies in a recursive binary assembly and disassembly of articulated bodies. The extension to closed loop sys-
tems were obtained through the application of constraint stabilization methods and proper decomposition
of constraint forces. Fisette and Peterkenne [19] and independently Anderson and Duan [2] adopted the
idea of a decomposition of multibody system into subchains. In 2004, Critchley and Anderson [8] explored
ideas of recursive coordinate reduction and presented parallel multibody algorithm with optimal logarithmic
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time complexity for general multibody systems applicability. The formulation however was not free from
problems arising from the fact that some matrices lost their ranks (i.e. matrices relating dependent state
variables to independent ones). In 2007, Mukherjee and Anderson [24] presented exact and non-iterative
divide and conquer algorithm for forward dynamics of MBS with single and coupled loops. The formu-
lation incorporated neither coordinate reductions nor Lagrange multipliers. The constraint equations were
imposed at the acceleration level through kinematic relations involving orthogonal complement of the joint
motion subspace. The algorithm indicated good constraint fulfillment and could easily handle systems in
singular configurations.

In a number of large industrial tasks there is a need to achieve real-time performance. The group of appli-
cations encompasses not only hardware-in-the-loop or human-in-the-loop computations but also the simu-
lation of complex, realistic interdisciplinary systems from area of e.g. biomechanics, robotics, aerospace,
heavy machinery and military industries. Much work was done in this field, which is evident in [6], [12].
The specialized formulations were developed to meet real-time performance conditions. The most effi-
cient one appears to be index-3 formulation with projections worked out by Cuadrado et al. [9], [10] and
[11]. Apart from the efficiency of the formulation, the index-3 formulation is more robust than classical
Lagrangian formulations. It does not cause failures in case of singular configurations and redundant con-
straints often encountered in analysis of realistic multibody systems. Moreover the accuracy, in terms of
constraint error violations, is kept under control of the user, which is a strong advantage, when simulating
complex, large multibody systems.

This paper presents a new parallel algorithm for real-time dynamics simulation of general multi-rigid-body
systems. The idea of the method comes from [22], however the authors verified that the formulation was
inaccurate, which was a direct consequence of ill-conditioning of associated matrices. In the proposed
method, we avoid the problem by careful algebraic manipulations. The algorithm is formulated by using
index-3 augmented Lagrangian formulation with projections [9], [10], where the trapezoidal rule has been
embedded into the solution process as an integration rule. The formulation makes use of a divide and con-
quer scheme, which is similar to that in [14]. The proposed approach significantly reduces the turnaround
times for the systems with large number of bodies and can be regarded as a tool for achieving efficient
computations for full dynamic multibody models.

2 OVERVIEW OF INDEX-3 FORMULATIONS

2.1 Classical formulation

This section presents an overview of the index-3 formulation in a global form, which is similar to that
presented in [10]. It will be useful in understanding and deriving parallel algorithm in position, veloctity
and acceleration level in section 3. Moreover some similarities will be shown between both formulations.
Let us write the equations of motion of a multibody system in a form of index-3 differential-algebraic
equations

Mq̈ + ΦT
qλ = Q(q, q̇, t) (1)

Φ(q, t) = 0 (2)

where M is the mass matrix, q̈ are the accelerations, Φq the Jacobian matrix of the constraint equations,
Φ the constraint vector, λ the Lagrange multipliers, and Q the vector of applied and velocity dependent
intertia forces. The single-step trapezoidal rule has been adopted as an integration scheme. The difference
equations in velocities and accelerations are following:

q̇n+1 =
2

∆t
qn+1 + ˆ̇qn where ˆ̇qn = −

( 2

∆t
qn + q̇n

)
(3)

q̈n+1 =
4

∆t2
qn+1 + ˆ̈qn where ˆ̈qn = −

( 4

∆t2
qn +

4

∆t
q̇n + q̈n

)
(4)

Equations (3) and (4) are introduced into (1) and (2) at time step n+ 1 yielding

4

∆t2
Mqn+1 + ΦT

qn+1
λn+1 −Qn+1 +M ˆ̈qn = 0 (5)



Φn+1 = 0 (6)

These equations are scaled by a factor of ∆t2

4 yielding

Mqn+1 +
∆t2

4
ΦT
qn+1

λn+1 −
∆t2

4
Qn+1 +

∆t2

4
M ˆ̈qn = 0 (7)

∆t2

4
Φn+1 = 0 (8)

Equations (7) and (8) form a system of nonlinear equations in q̄ = [qT ,λT ]T . These equations may be
solved by the Newton-Raphson procedure as in (9):

∂f(q̄i)

∂q̄
∆q̄i+1 = −f(q̄i) where ∆q̄i+1 =

[
∆qi+1

∆λi+1

]
=

[
qi+1 − qi
λi+1 − λi

]
(9)

where

f(q̄) =

[
∆t2

4 (Mq̈ + ΦT
qλ−Q)

∆t2

4 Φ

]
=

[
0
0

]
(10)

and the tangent matrix can be approximated as

∂f(q̄)

∂q̄
=

[
M + ∆t

2 C + ∆t2

4 K
∆t2

4 ΦT
q

∆t2

4 Φq 0

]
(11)

where C = −∂Q
∂q̇ andK = −∂Q∂q . The equations of motion at the position level are following[
M + ∆t

2 C + ∆t2

4 K
∆t2

4 ΦT
q

∆t2

4 Φq 0

]i [
∆q
∆λ

]i+1

= −

[
∆t2

4 (Mq̈ + ΦT
qλ−Q)

∆t2

4 Φ

]i
(12)

The first and second derivatives of constraint equations will not be satisfied during the simulation course,
because the constraint conditions have been imposed in positions only. In order to achieve constraint fulfill-
ment, mass-orthogonal projections in velocities and accelerations can be introduced, such that the leading
matrices are identical to the tangent matrix (11). If q̇∗ and q̈∗ are the velocities and accelerations obtained
after convergence of Newton-Raphson procedure (12), the set of new variables that satisfy constraint equa-
tions Φ̇ and Φ̈ can be evaluated once per integration step as follows[

M + ∆t
2 C + ∆t2

4 K
∆t2

4 ΦT
q

∆t2

4 Φq 0

] [
q̇
σ

]
=

[
(M + ∆t

2 C + ∆t2

4 K)q̇∗

−∆t2

4 Φt

]
(13)

and [
M + ∆t

2 C + ∆t2

4 K
∆t2

4 ΦT
q

∆t2

4 Φq 0

] [
q̈
κ

]
=

[
(M + ∆t

2 C + ∆t2

4 K)q̈∗

−∆t2

4 γ

]
(14)

It is worth noting that the leading matrix of the previous systems of equations becomes singular when the
Jacobian matrix of the constraints Φq does. The situation may happen due to the redundant constraint or
singular positions encountered in the multibody system.

2.2 Formulation with projections

The leading matrix of the formulation described in section 2.1 is not robust when singular positions and
redundant constraints are encountered during the simulation. It is possible to rewrite equations of motion
(1) by using index-three formulation, in which the positions q become the primary variables [6], [10]. The
corresponding equations of motion are given as

Mq̈ + ΦT
q(λ+ αΦ) = Q(q, q̇, t) (15)

where α is the penalty vector. The Lagrange multipliers are obtained from the following iteration process:

λi+1 = λi + αΦi+1 where i = 0, 1, 2, · · · (16)



The value λ0 = 0 is chosen for the first iteration. The Lagrange multipliers in (16) can be expanded using
Taylor series

∆λi+1 = αΦi+1 ≈ α(Φq∆qi+1 + Φi) (17)

Inserting (17) into (12)

(M +
∆t

2
C +

∆t2

4
(K + ΦT

qαΦq))i∆qi+1 = −∆t2

4
(Mq̈ + ΦT

q(λ+ αΦ)−Q)i (18)

The leading matrix is symmetric and positive-definite, thus it is robust in case of singular configurations and
redundant constraints, however it reveals that ill-conditioning may appear for small time steps [10]. It is
not expected that the corresponding sets of velocities and accelerations satisfy Φ̇ = 0 and Φ̈ = 0, because
these conditions have not been imposed in the solution process. Mass-orthogonal projections in velocities
and accelerations are introduced to prevent from constraint violations. Lagrange multipliers at the velocity
and acceleration level can be expressed respectively:

σi+1 = σi + αΦ̇
i+1

= σi + α(Φqq̇
i+1 + Φt) (19)

and
κi+1 = κi + αΦ̈

i+1
= κi + α(Φqq̈

i+1 + γ) (20)

If q̇∗ and q̈∗ are the velocities and accelerations obtained from (3) and (4), after convergence of Newton-
Raphson procedure (18), the set of new variables that satisfy constraint equations Φ̇ and Φ̈ can be evaluated
by substituting equation (19) and (20) into (13) and (14).

(M +
∆t

2
C +

∆t2

4
(K + ΦT

qαΦq))q̇ = (M +
∆t

2
C +

∆t2

4
K)q̇∗ − ∆t2

4
ΦT
qαΦt (21)

and

(M +
∆t

2
C +

∆t2

4
(K + ΦT

qαΦq))q̈ = (M +
∆t

2
C +

∆t2

4
K)q̈∗ − ∆t2

4
ΦT
qαγ (22)

Now, the leading matrix M + ∆t
2 C + ∆t2

4 (K + ΦT
qαΦq) is symmetric and positive definite, even when

Jacobian matrices lose their ranks. The convergence of the iteration process defined in (18) can be improved
by introducing a predictor. A good second order predictor is the modified trapezoidal rule, which gives the
following approximation [12]:

q̃0
n+1 = qn + q̇n∆t+ q̈n

∆t2

2
(23)

Instead of using solution from time n as the initial conditions for the next time step, we can take the approx-
imation as in (23). The process is computationally inexpensive but significantly improves the convergence
rate.

3 INDEX-3 DIVIDE AND CONQUER LAGRANGIAN FORMULATION WITH PROJECTIONS

This section presents analytical derivations for the index-3 parallel algorithm for real-time dynamics sim-
ulations of general rigid multibody systems. The system is modeled by the use of absolute coordinates.
The modified trapezoidal rule is embedded into the solution process. The proposed method makes use of
a divide and conquer algorithm at position, velocity and acceleration level.

Figure 1 depicts a system of two rigid bodies connected by a joint. Each body is characterized by generalized
coordinates q, which are in the form of 7×1 matrix of position and orientation described in Euler parameters
q = [rT pT ]. The quantities are associated with the mass center of a body. Equations of motion for bodies
A and B with embedded trapezoidal rule can be written as in (12):

M̃
A

∆qA +
∆t2

4
Φ1 T
qA∆λ1 +

∆t2

4
ΦT
qA∆λ+

∆t2

4
ΦN T
qA ∆λNA = Q̃

A
(24)

M̃
B

∆qB +
∆t2

4
Φ2 T
qB∆λ2 +

∆t2

4
ΦT
qB∆λ+

∆t2

4
ΦN T
qB ∆λNB = Q̃

B
(25)



Figure 1. System of articulated bodies

where

M̃
A

= MA +
∆t

2
CA +

∆t2

4
KA (26)

Q̃
A

= −∆t2

4
(MAq̈A + Φ1 T

qAλ1 + ΦT
qAλ+ ΦN T

qA λ
N
A −Q

A) (27)

M̃
B

= MB +
∆t

2
CB +

∆t2

4
KB (28)

Q̃
B

= −∆t2

4
(MB q̈B + Φ2 T

qBλ2 + ΦT
qBλ+ ΦN T

qB λ
N
B −Q

B) (29)

The leading matrices M̃
A

and M̃
B

are not invertible and may cause failures in case of rank deficiency of
Jacobian matrices. We introduce Lagrange multipiliers approximations, as in equation (17).

∆λ = αΦ(qA, qB , t) = α(ΦqA∆qA + ΦqB∆qB + Φ(qA, qB , t)) (30)

∆λNA = αΦN (qA) = α(ΦN T
qA ∆qA + ΦN (qA)) (31)

∆λNB = αΦN (qB) = α(ΦN T
qB ∆qB + ΦN (qB)) (32)

Substituting relations (30), (31) and (32) into (24) and (25) yields

[M̃
A

+
∆t2

4
(ΦT
qAαΦqA + ΦN T

qA αΦN
qA)]∆qA +

∆t2

4
[ΦT
qAαΦqB ]∆qB +

∆t2

4
Φ1 T
qA∆λ1 =

= Q̃
A
− ∆t2

4
(ΦT
qAαΦ(qA, qB , t) + ΦN T

qA αΦN (qA))

(33)

∆t2

4
[ΦT
qBαΦqA ]∆qA + [M̃

B
+

∆t2

4
(ΦT
qBαΦqB + ΦN T

qB αΦN
qB )]∆qB +

∆t2

4
Φ2 T
qB∆λ2 =

= Q̃
B
− ∆t2

4
(ΦT
qBαΦ(qA, qB , t) + ΦN T

qB αΦN (qB))

(34)

Equations (33) and (34) form a basis for further derivations. They are starting point for the main pass phase,
which will be presented below. In contrast to equations (24) and (25), relations (33) and (34) can be solved
for positions qA and qB respectively. The encountered coefficient matrices are symmetric positive definite,
even in situations, when constraint Jacobians lose their ranks. Regarding Figure 1 and expressions (33) and
(34), we can generalize formulation to incorporate more than two articulated bodies. Let us consider the
system of relations:

MA
11∆qA1 +MA

12∆qA2 +
∆t2

4
Φ1 T
qA

1
∆λ1 = QA

1 (35)

MA
21∆qA1 +MA

22∆qA2 +
∆t2

4
ΦT
qA

2
∆λ = QA

2 (36)



MB
11∆qB1 +MB

12∆qB2 +
∆t2

4
ΦT
qB

1
∆λ = QB

1 (37)

MB
21∆qB1 +MB

22∆qB2 +
∆t2

4
Φ2 T
qB

2
∆λ2 = QB

2 (38)

The objective of the following algebraic manipulations is to obtain the equations for the set C from the
relation (35) to (38):

MC
11∆qA1 +MC

12∆qB2 +
∆t2

4
Φ1 T
qA

1
∆λ1 = QC

1 (39)

MC
21∆qA1 +MC

22∆qB2 +
∆t2

4
Φ2 T
qB

2
∆λ2 = QC

2 (40)

Unknown Lagrange multipliers can be found through the following iterative process (see (17)):

∆λ = αΦ(qA2 , q
B
1 , t) = α(ΦqA

2
∆qA2 + ΦqB

1
∆qB1 + Φi) (41)

Dividing (41) by penalty factor α and inserting relations (36) and (37) to (41) yields

1

α
I∆λ = ΦqA

2
(MA

22)−1(QA
2 −M

A
21∆qA1 −

∆t2

4
ΦT
qA

2
∆λ)+

+ΦqB
1

(MB
11)−1(QB

1 −M
B
12∆qB2 −

∆t2

4
ΦT
qB

1
∆λ) + Φi

(42)

where I is the identity matrix of proper dimension. The relation (42) can be solved in terms of Lagrange
multipliers between the set of bodies A and B:

[
1

α
I +

∆t2

4
(ΦqA

2
(MA

22)−1ΦT
qA

2
+ ΦqB

1
(MB

11)−1ΦT
qB

1
)]∆λ =

= ΦqA
2

(MA
22)−1(QA

2 −M
A
21∆qA1 ) + ΦqB

1
(MB

11)−1(QB
1 −M

B
12∆qB2 ) + Φ

(43)

We denote matrix C as

C = [
1

α
I +

∆t2

4
(ΦqA

2
(MA

22)−1ΦT
qA

2
+ ΦqB

1
(MB

11)−1ΦT
qB

1
)]−1 (44)

There is no problem with matrix inversion in (44), because of the presence of small values 1
α , added on

the diagonal, which improve the matrix conditioning. Substituting equation (43) into (36) and taking into
account (44) we obtain the following relations:

∆qA2 = (MA
22)−1{QA

2 − (I − ∆t2

4
ΦT
qA

2
CΦqA

2
(MA

22)−1)MA
21∆qA1 +

+
∆t2

4
ΦT
qA

2
CΦqB

1
(MB

11)−1MB
12∆qB2 }

(45)

where

Q
A

2 = QA
2 −

∆t2

4
ΦT
qA

2
C(ΦqA

2
(MA

22)−1QA
2 + ΦqB

1
(MB

11)−1QB
1 + Φ) (46)

We can also insert equation (43) into (37)

∆qB1 = (MB
11)−1{QB

1 − (I − ∆t2

4
ΦT
qB

1
CΦqB

1
(MB

11)−1)MB
12∆qB2 +

+
∆t2

4
ΦT
qB

1
CΦqA

2
(MA

22)−1MA
21∆qA1 }

(47)

where

Q
B

1 = QB
1 −

∆t2

4
ΦT
qB

1
C(ΦqA

2
(MA

22)−1QA
2 + ΦqB

1
(MB

11)−1QB
1 + Φ) (48)



The final step is to substitute positions from equations (45) and (47) into equations (35) and (38) respec-
tively.

[MA
11 −M

A
12(MA

22)−1(I − ∆t2

4
ΦT
qA

2
CΦqA

2
(MA

22)−1)MA
21]∆qA1 +

+[
∆t2

4
MA

12(MA
22)−1ΦT

qA
2
CΦqB

1
(MB

11)−1MB
12]∆qB2 +

∆t2

4
Φ1 T
qA

1
∆λ1 =

=QA
1 −M

A
12(MA

22)−1Q
A

2

(49)

[
∆t2

4
MB

21(MB
11)−1ΦT

qB
1
CΦqA

2
(MA

22)−1MA
21]∆qA1 +

∆t2

4
Φ2 T
qB

2
∆λ2

+[MB
22 −M

B
21(MB

11)−1(I − ∆t2

4
ΦT
qB

1
CΦqB

1
(MB

11)−1)MB
12]∆qB2 =

=QB
2 −M

B
21(MB

11)−1Q
B

1

(50)

By gathering appropriate matrix coefficients and comparing equations (39) and (40) together with (49) and
(50), the following final relations are obtained:

MC
11 = MA

11 −M
A
12(MA

22)−1(I − ∆t2

4
ΦT
qA

2
CΦqA

2
(MA

22)−1)MA
21 (51)

MC
12 =

∆t2

4
MA

12(MA
22)−1ΦT

qA
2
CΦqB

1
(MB

11)−1MB
12 (52)

MC
21 =

∆t2

4
MB

21(MB
11)−1ΦT

qB
1
CΦqA

2
(MA

22)−1MA
21 ≡ (MC

12)T (53)

MC
22 = MB

22 −M
B
21(MB

11)−1(I − ∆t2

4
ΦT
qB

1
CΦqB

1
(MB

11)−1)MB
12 (54)

and
QC

1 = QA
1 −M

A
12(MA

22)−1Q
A

2 (55)

QC
2 = QB

2 −M
B
21(MB

11)−1Q
B

1 (56)

Equations (51)-(56) define the recursive relations for the object achieved after the binary assembly of the
child-objects. When the root node is reached, the equations are similar to (39) and (40). For open chain
system ∆λ2 = 0, which indicate free floating terminal body. In turn, Lagrange multipliers associated with
a joint connected to fixed base body can be approximated from (41). We can evaluate positions ∆qA1 and
∆qB2 from the system of linear equations. Starting with evaluated base and terminal body positions, all
positions and Lagrange multipliers for the next time instant can be computed from equations (45), (47) and
(41). The divide and conquer scheme in absolute coordinates with embedded trapezoidal rule consists of
two passes, the main pass, and the back-substitution pass. The presented algebraic manipulations enable
to construct equations of motion of a multibody system by the process of recursive binary assembly and
disassembly, as depicted in Figure 2. The process starts with equations of motion for each body in the
system (24) and (25). Subassemblies, which correspond to nodes in the graph, are constructed by traversing
the binary tree. Finally, the entire MBS is obtained, which is indicated as a root node in 2. The main pass
finishes at this stage. Now, taking into account a connection of a chain to fixed base and free floating terminal
body, the back-substitution phase is started. All Lagrange multipliers and bodies’ positions can be computed
in the system, traversing the tree from root node to leaves. Derived parallel algorithm posses the same
features as original index-3 formulation does. However the formulation does not enforce simultaneously the
errors in velocities and acceleration constraints to the desired level. In order to overcome these drawbacks,
mass-orthogonal projections in velocities and accelerations are employed for further considerations as in
(13) and (14) together with (19) and (20). These relations are of the same form as in case of (24) and (25),
therefore we can apply again the divide and conquer approach described in this paper at the velocity and
acceleration level. The projections will be made only once per integration step.



Figure 2. Recursive binary assembly and disassembly of a four-link multibody system

4 NUMERICAL EXPERIMENTS

4.1 Open chain system

This section presents some results of the numerical experiments, which are performed to prove the correct-
ness of the algorithm as well as indicate some of its features. In order to investigate constraint fulfillment
of the derived algorithm, a test mechanical system with sixteen degrees of freedom have been created, as
shown in Figure 3. Each body in the open chain is connected to each other by simple revolute joints. All

Figure 3. A 16 body test mechanical system

axes of revolution are parallel to the global axis z. The numbering of the bodies increases successively
from the non-movable base body 0 to the terminal body 16. The characteristic points and body mass centres
were located on the sine function, as indicated in Figure 3. The properties of each body in the chain are
following: mass mi = 1kg, product of inertia expressed as a 3 × 3 diagonal matrix Ii = diag(1.0)kgm2,
with respect to the reference frames fixed at each body. At initial instant, absolute coordinates of the bodies
are nonzero and absolute velocities are set to zero. Distance between the reference points and the body
mass center projected onto the global x axis is constant and equals to π

16 . The multibody system is released
from non-equilibrium state under gravity forces. The results of the 20-second dynamics simulation, with
α = 107, integration step ∆t = 0.01 second and the stop criterion for the Newton-Raphson procedure taken



as ||∆q|| < ε = 10−6 are depicted in Figure 4.

Figure 4. Constraint violation errors for 16-body open chain system

The proposed formulation clearly stabilizes the constraint equations at the position, velocity and accelera-
tion levels. Errors in position constraint violations are small compared to the characteristic dimension of the
sample multibody system and regarding the defined tolerances. Analysis of the constraint violation errors
indicates that the smallest errors are made at the position level. The constraints errors in q̇ and q̈ are worse,
but still acceptable. The result is a direct consequence of applying trapezoidal rule for the approximation of
velocities and accelerations. In Figure 4 we can also observe the number of iterations in terms of simulation
time. Few iterations are required to convergence the solutions. When we tighten the ε, more computational
burden can be expected to fulfill user specified tolerances. The projections in velocities and accelerations
are made only once, which is an improvement in performance over the algorithms described in [22], which
took into account augmented Lagrangian formulation in a full form without embedding the integration rule.

4.2 Performance results

Another issue, which should be considered, is the performance characteristics of the formulation and realis-
tic implementation of the algorithm on the parallel computer. The presented implementation can currently
work with spatial open chain systems. It is constructed in such a way that can help to gather the performance
results of the dynamic simulation when different multibody systems are considered. The properties of the
divide and conquer algorithm are exploited to build the parallel code. According to Figure 2, every node in
the system can be computed in parallel at the specified level. The implementation is built upon this idea and
consists of two nested loops. The outermost loop consists of log2n iterations, whereas the innermost loop
traverses through the number of bodies at the indicated level. The amount of concurrency varies over the
execution of a program, which can constrain the speedup, especially for low number of bodies in the system.
At some level of recursion, the amount of computation may become so small that it is worth grouping tasks
and treating them as a one computational subproblem. This approach should be more effective for low num-



ber of bodies compared to the strategy applied in this implementation. The formulations described in this
paper are parallelized according to the OpenMP [23], [25] compiler directives and library functions, chosen
with respect to their simplicity and portability across shared memory architectures. There are other ways to
parallelize the code, e.g. POSIX threads, which are often used in real-time operating systems practice. The
POSIX threads add more control over the parallelization and synchronization process and therefore may
give better performance results compared to OpenMP directives. The aforementioned innermost loops are
parallelized by the use of parallel loop constructs that specify iterations of one or more loops to be executed
in parallel by threads in the team. The parallel multibody codes are executed on shared memory parallel
computer (Sun Server), running OpenSuse 11.2 Operating System. The parallel computer is equipped with
two-socket motherboard, in which two quad-core processors are installed. Each processor is a Quad-Core
AMD Opteron Processor 2356 (2.3GHz) with 512kB cache L2 per core and four 2GB ECC DDR-667 mem-
ory modules are set in the motherboard. The source codes are compiled with -O3 optimization flag using
gfortran 4.3 compiler. For performance evaluation purposes, a test mechanical system with revolute joints
is used, as described in previous section. The only change is that the system has adjustable number of bod-
ies. When more bodies are added to the system, the chain is getting longer but the links maintain the same
dimension. The simulation time is 10.0 seconds and the integration time step is set to 0.0175 second and
chosen carefully to ensure stability and convergence along whole simulation time. User specified tolerance
is chosen to ε = 3 ·10−4 and penalty factor is α = 106. The maximal number of iterations is limited to four
iterations per integration step. The efficiency results of the developed index-3 formulation are compared to
timing results obtained from execution of index-1 parallel algorithm presented in [22], where accelerations
are primary variables and constraint violation errors at position, velocity and acceleration levels are cleaned
with mass-orthogonal projections. The conditions of the numerical experiments are the same in both cases,
however the equations of motion evaluated from the cited algorithm are integrated with Runge-Kutta 4th

order routine. The execution times for different number of bodies may be seen in Figure 5.

Figure 5. Comparison of performance results for parallel index-3 formulation

Figure 5 depicts the timing results obtained during a 10-second dynamics simulation of multibody open
chain. The influence of number of degrees of freedom and number of processing elements on the timing



Figure 6. Speedup for parallel index-3 formulation

results are considered. None of the simulations performed by parallel algorithm with mass-orthogonal pro-
jections [22] meet real-time conditions. Having parallel computer described in this section, when multibody
systems with less than 64 bodies are considered, the execution times show good level of efficiency and make
moderate use of parallel computing. This effect was observed in cited work and is evident in Fig. 6. For
128 bodies, real-time efficieny can’t be approached unless three processors are employed for the computa-
tions. It should be noted that the cost associated with thread management reduces useful speed increases for
small multibody systems. However, the timing results indicate that the parallelization is more effective in
case of large multibody systems, where higher increase in computational load/thread may be expected. In
summary, it is clearly seen that the combination of the parallel index-3 formulation with integration scheme
gives much better performance results compared to the cited index-1 algorithm. The chosen integration step
constitutes a compromise between the levels of accuracy and efficiency. The CPU-savings could be even
greater if large time-steps would be allowable for the price of losing the information about dynamics of
a multibody system. When large number of bodies are analyzed, the process of solving equations of motion
can be numerically stiff. To obtain stable and efficient dynamics simulations for relatively large time-steps,
the integrator (e.g. Newmark method) may provide some numerical damping [11]. Similarly, as in the
paper, we can add the integration scheme into the formulation to obtain planned characteristics.

5 CONCLUSIONS

In the paper, we have developed new parallel, index-3 algorithm for the dynamics of general multibody sys-
tems, which encompasses parallel efficiency, acceptable accuracy and robustness. The method is a combina-
tion of divide and conquer algorithm together with index-3 approach. Trapezoidal rule has been embedded
into the solution process, to ensure good level of efficiency comapared to more standard augmented La-
grangian formulation with mass-orthogonal projections. The method can handle situations, when constraint
Jacobian matrices lose its rank, because index-3 approach ensures symmetric positive definite leading ma-
trices. The improvement in efficiency has been observed compared to the previous work. For larger systems
the method experiences significant computational benefits from parallel computing and can be regarded as
a tool for achieving efficient dynamics simulation for full multibody models.
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