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Several years ago, the authors proposed a method for the efficient simulation of the dynamics of 
multibody systems: the modeling of the system was carried out in natural or fully-Cartesian 
coordinates (dependent and absolute coordinates), the equations of motion were stated as an index-3 
augmented Lagrangian formulation, the numerical integration was performed through 
Newmark-type algorithms, and the resulting velocities and accelerations were projected into their 
corresponding constraint manifolds. The formalism showed to be robust and efficient: it worked 
properly in mechanisms with singular configurations or changing topologies, and provided 
successful results for large and complex industrial problems, like the detailed models of cars and 
excavators. Some years later, the method was extended so as to consider the modeling in joint 
coordinates (dependent and relative coordinates), taking advantage of the recursive kinematics and 
dynamics allowed for such an approach, which led to a method with improved efficiency for large 
systems. 

Hydraulic actuators play a relevant role in many industrial fields, like heavy machinery, aircraft or 
entertainment. A common simplified technique to include the behaviour of hydraulic actuators 
within simulations of multibody dynamics consists of kinematically guide the variable length 
corresponding to the distance between the ends of the hydraulic actuator. The guidance law which 
provides the actuator length as function of the driving inputs (provided by, let’s say, the machine 
operator) may be just a linear mapping or may account for force or speed limitations and other 
characteristics of the real power system. 

However, a more detailed modeling is required when the hydraulic dynamics of the actuators should 
be taken into account. This can be done through linearized or fully nonlinear differential equations, 
depending on the level of detail required in the solution. When addressing the nonlinear approach 
(pressures in the hydraulic chambers are coupled with the system motion), two different methods 
have been followed. The first one combines the hydraulic and multibody dynamic equations, thus 
yielding a unified system of differential equations which is integrated in time by means of a single 
integration scheme. The second one applies co-simulation, so that each problem is separately solved 
by means of a different integration scheme, and information is exchanged between the two 
processes: typically, the multibody problem leads the solution process, since its lower stiffness 
allows for larger time-step sizes. 

In this work, the first method is applied: both the hydraulic and multibody dynamic equations are 
combined within the formalism described in the first paragraph in a unified approach. The resulting 
formalism is developed, and the raised numerical issues are discussed. An academic example serves 
to compare the complexity and efficiency of the simplified (kinematic guidance) and detailed 
approaches (fully nonlinear differential equations), leading to conclude that the robustness of the 
unified method is preserved and that the efficiency of the method is only moderately penalized. 
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ABSTRACT 

Several years ago, the authors proposed a method for 
the efficient simulation of the dynamics of multibody 
systems: an index-3 augmented Lagrangian formulation 
with projections in velocities and accelerations to the 
constraint manifold, which relied on Newmark-type 
algorithms for the numerical integration in time. The 
formalism showed to be robust and efficient when facing a 
number of large and complex problems, as the detailed 
models of cars and excavators. 

On the other hand, hydraulic actuators are present in 
many industrial applications of multibody dynamics 
techniques, like in the case of the heavy machinery field. 
When simulating the dynamics of this kind of problems, 
two different approaches are common: to resort to 
kinematically guide the variable length of the actuator, thus 
avoiding the need to consider the dynamics of the hydraulic 
system; or to perform a multi-rate integration of both 
phenomena if a more detailed description of the problem is 
required, for example, when the objective of the study is to 
optimize the pump control. 

This work addresses the inclusion of hydraulic 
actuators dynamics in the method for the simulation of 
multibody system dynamics mentioned above. The 
resulting formalism is developed, and the raised numerical 
issues are discussed. An academic example serves to 
compare the complexity and efficiency of the simplified 
(kinematic guidance), multi-rate and unified approaches, 
leading to conclude that the robustness of the method is 
preserved and that the efficiency of the method is 
moderately penalized. 

 
Keywords: multibody dynamics, hydraulic dynamics, 
augmented Lagrangian formulation, efficient simulation, 
hydraulic cylinders, heavy machinery. 
 
 
1. INTRODUCTION 

Several years ago, the authors proposed a method for 
the efficient simulation of the dynamics of multibody 
systems [1]: the modeling of the system was carried out in  

 
natural or fully-Cartesian coordinates (dependent and 
absolute coordinates), the equations of motion were stated 
as an index-3 augmented Lagrangian formulation, the 
numerical integration was performed through Newmark-
type algorithms, and the resulting velocities and 
accelerations were projected into their corresponding 
constraint manifolds. The formalism showed to be robust 
and efficient: it worked properly in mechanisms with 
singular configurations or changing topologies, and 
provided successful results for large and complex industrial 
problems, like the detailed models of cars and excavators, 
allowing integration time steps as large as 10 ms. Some 
years later, the method was extended [2] so as to consider 
the modeling in joint coordinates (dependent and relative 
coordinates), taking advantage of the recursive kinematics 
and dynamics allowed for such an approach, which led to a 
method with improved efficiency for large systems. 
 

Figure 1: DIAGRAM OF A HYDRAULIC CYLINDER AND VALVE. 

 
Hydraulic actuators play a relevant role in many 

industrial fields, like for example in most heavy machinery 
systems [3, 4]. The dynamics of such devices are usually 
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modeled in terms of the orifice equations, volumes and 
pressure areas, as depicted in Fig. 1. Pressure rates for the 
volumes on both sides of the cylinder piston are derived 
from fluid continuity and compressibility concepts [5] as 

 

 ( )A A PA TA BA

A

Ap V Q Q Q
V

β
= − + + +  (1) 

 ( )B B PB TB BA

B

Bp V Q Q Q
V

β
= − + + +  (2) 

 
where QBA represents the leakage flow and is commonly 
neglected. The bulk modulus at each side of the cylinder, βi, 
is obtained as function of the pressures as 
 

 
21

2
i i

i
i

ap bp
a bp

β + +
=

+
 (3) 

 
with a and b being known constants for the fluid. The flow 
across each orifice area, Aorf, in a hydraulic valve is given 
by 
 

 
( ) ( )

2 in out
orf d in out

p p
Q A C sign p p

ρ
−

= −  (4) 

 
being inp  and outp  the pressures at both sides of the 
orifice. 

In the valve, there are four orifice areas which are a 
nonlinear function of the spool displacement, κ, 
corresponding to ( )PAA κ , ( )TAA κ , ( )PBA κ , ( )TBA κ . 
The displacement of the spool includes some dead zones to 
minimize leakage [6]. The variation of the pressure 
provided by the pump is a nonlinear function of the speed, 
the flow, the leakages and the geometry of the pump, but 
this is not taken into account in this work. 

A common simplified technique to include the 
behavior of hydraulic actuators within simulations of 
multibody dynamics consists of kinematically guide the 
variable length corresponding to the distance between the 
ends of the hydraulic actuator [7]. The guidance law which 
provides the actuator length as function of the driving 
inputs (provided by, let’s say, the machine operator) may 
be just a linear mapping or may account for force or speed 
limitations and other characteristics of the real power 
system. 

However, for some applications, e.g. when 
optimization of the pump control is sought, a more detailed 
modeling is required, and the dynamics of hydraulic 
actuators should be taken into account. Some attempts have 
been presented in the literature in this direction [8, 9]. From 

the integration point of view, two different approaches have 
been followed, namely, the unified approach, and the co-
integration. 

The first one combines the hydraulic and multibody 
equations, thus yielding a single system [10, 11] that is then 
integrated in time. 

In the second approach, one problem leads the 
solution process and, usually, its integration time-step size 
is larger. Therefore, both problems are integrated 
separately, but information is exchanged between them at 
every integration time step of the main process. This is 
known as multi-rate integration, and can be carried out by 
either employing a different software for each problem (co-
simulation) [9, 12] or a single environment where both 
problems are integrated separately (co-integration) [13,14]. 
Hydraulic devices are easily modeled by a few first-order 
nonlinear differential equations, but it is a numerically stiff 
set of equations due to the high “stiffness” of the hydraulic 
fluid, which is characterized by a bulk modulus that may 
raise to 700 MPa. This problem may be overcome by using 
a very small time-step size for the integration that ranges 
typically between 10-6 s and 10-4 s [15]. Consequently, the 
multibody integration leads the process and the hydraulic 
problem is solved with a smaller time-step size. 

In this work, the first approach from those that take 
the hydraulic dynamics into account is addressed: both 
hydraulic and multibody dynamic equations are combined 
within the formalism mentioned at the beginning of the 
Section in a unified approach. The efficiency of this 
scheme is tested by comparison with the kinematic 
guidance of hydraulic actuators. The accuracy of the 
solution is contrasted with that of a co-integration scheme. 
The organization of the paper is as follows: the original 
method for multibody dynamics is briefly exposed in 
Section 2; the inclusion of the hydraulic dynamic equations 
is addressed in Section 3, and the resulting formalism is 
obtained; an academic example aimed to test the behavior 
of the proposed scheme is presented in Section 4, while in 
Section 5 the results coming from the simulation of the 
example are discussed and compared with those of the 
other approaches mentioned above; finally, the conclusions 
are summarized in Section 6. 

 
 

2. THE ORIGINAL MULTIBODY METHOD 
The original method for the dynamics of multibody 

systems is briefly described in this Section. The modeling 
is carried out in dependent fully-Cartesian coordinates, also 
known as natural coordinates. Further explanation about 
these coordinates and the constraints they lead to can be 
found in [16]. 



5th  Asian Conference on Multibody Dynamics 2010 
August  23‐26,  2010,  Kyoto,  Japan 

 

Copyright  (c)  2010  by  JSME 

The equations of motion of the whole multibody 
system are given by an index-3 augmented Lagrangian 
formulation in the form 

 
 T T *α+ + =q qMq Φ Φ Φ λ Q  (5) 
 
where M is the mass matrix, q  are the accelerations, qΦ  
the Jacobian matrix of the constraint equations, α the 
penalty factor, Φ the constraints vector, *λ  the Lagrange 
multipliers and Q the vector of applied and velocity 
dependent inertia forces. The Lagrange multipliers are 
obtained from the following iteration process (given by 
sub-index i, while sub-index n stands for the time step), 
 
 * *

1 1i i iα+ += +λ λ Φ    i=0,1,2,... (6) 
 
where the value of *

oλ  is taken equal to the *λ  obtained in 
the previous time step. 

As integration scheme, the implicit single-step 
trapezoidal rule is adopted. The corresponding difference 
equations in velocities and accelerations are: 

 

 
1 1

1 12

2 ˆ

4 ˆ

n n n

n n n

Δt

Δt

+ +

+ +

= +

= +

q q q

q q q
 (7) 

 
with, 
 

 

2

2ˆ

4 4ˆ

n n n

n n n n

Δt

ΔtΔt

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

q q q

q q q q
 (8) 

 
Dynamic equilibrium can be established at time step 

n+1 by introducing the difference equations (6) and (7) into 
the equations of motion (4), leading to 
 

 ( )T
1 1 1 1 12

4 ˆ 0n n n n n nΔt
α+ + + + ++ + − + =qMq Φ Φ λ Q Mq  (9) 

 
For numerical reasons, the scaling of Eq. (8) by a 

factor of Δt2/4 seems to be convenient, thus yielding 
 

 ( )
2 2 2

T
1 1 1 1 1

ˆ 0
4 4 4n n n n n n
Δt Δt Δtα+ + + + ++ + − + =qMq Φ Φ λ Q Mq (10) 

 
or, symbolically ( )1 0n+ =f q . 

In order to obtain the solution of this nonlinear system, 
the widely used iterative Newton-Raphson method is 
applied 
 

 
( ) ( )1i i

i

∂
∂ +

⎡ ⎤
Δ = − ⎡ ⎤⎢ ⎥ ⎣ ⎦

⎣ ⎦

f q
q f q

q
 (11) 

 
being the residual vector, 
 

 ( ) ( )
2

T T *

4
Δt α= + + −⎡ ⎤⎣ ⎦ q qf q Mq Φ Φ Φ λ Q  (12) 

 
and the approximated tangent matrix, 
 

 
( ) ( )

2
T

2 4
Δt Δt∂

α
∂

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
q q

f q
M C Φ Φ K

q
 (13) 

 
where C and K represent the contribution of damping and 
elastic forces of the system provided they exist. 

The procedure explained above yields a set of 
positions 1n+q  that not only satisfies the equations of 
motion (4), but also the constraint conditions 0=Φ . 
However, it is not expected that the corresponding sets of 
velocities and accelerations satisfy 0=Φ  and 0=Φ , 
because these conditions have not been imposed in the 
solution process. To overcome this difficulty, velocities and 
accelerations are projected into their corresponding 
constraint manifolds. The projection leading matrix is the 
same tangent matrix of Eq. (12). Therefore, 
triangularization is avoided and projections in velocities 
and accelerations are carried out with just forward 
reductions and back substitutions. 

If *q  and *q  are the velocities and accelerations 
obtained after convergence has been achieved within the 
Newton-Raphson iteration, their projected counterparts q  
and q  are calculated from 
 

 
2 2

T * T

4 4 t
Δt Δtα α

⎡ ⎤
+ = −⎢ ⎥

⎣ ⎦
q q qW Φ Φ q Wq Φ Φ  (14) 

 
for the velocities, and 
 

 ( )
2 2

T * T

4 4 t
Δt Δtα α

⎡ ⎤
+ = − +⎢ ⎥

⎣ ⎦
q q q qW Φ Φ q Wq Φ Φ q Φ  (15) 
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for the accelerations, being, 
 

 
2

2 4
Δt Δt

= + +W M C K  (16) 

 
 
3. THE PROPOSED METHOD FOR 
MULTIBODY AND HYDRAULIC DYNAMICS 

Now, the method described in the previous Section is 
extended so as to also consider the hydraulic dynamic 
equations. The index-3 augmented Lagrangian formulation 
is complemented with the pressure variation equations, 
leading to the following combined system of equations: 

 

 
( )

T T * ( , , )
, ,

α+ + =
=

q qMq Φ Φ Φ λ Q q q p
p h p q q

 (17) 

 
where vector p contains the pressures of the chambers (two 
for each hydraulic cylinder), and the dependency of both 
the applied forces vector Q and the function h with respect 
to positions q, velocities q  and pressures p is explicitly 
indicated. The Lagrange multipliers are obtained from the 
same iteration process already described in the previous 
Section. 

Again, the implicit single-step trapezoidal rule is 
adopted as integration scheme. The corresponding 
difference equations in velocities, accelerations and 
pressure derivatives are, 
 

 

1 1

1 12

1 1

2 ˆ

4 ˆ

2 ˆ

n n n

n n n

n n n

Δt

Δt

Δt

+ +

+ +

+ +

= +

= +

= +

q q q

q q q

p p p

 (18) 

 
being, 
 

 2

2ˆ

4 4ˆ

2ˆ

n n n

n n n n

n n n

Δt

ΔtΔt

Δt

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

q q q

q q q q

p p p

 (19) 

 
that is, the pressure derivatives take the same integration 
scheme than the velocities. 

If dynamic equilibrium is established at time step n+1 
by introducing the difference equations (18-19) into the 
differential equations (17), the following result is obtained, 
 

 ( )T
1 1 1 1 12

4 ˆ 0n n n n n nΔt
α+ + + + ++ + − + =qMq Φ Φ λ Q Mq  (20) 

 1 1
2 ˆ 0n n nΔt + +− + =p h p  (21) 

 
The scaling of Eq. (20-21) by a factor of Δt2/4 is now 

performed, as it was done in the previous Section for the 
multibody problem, thus yielding 
 

 ( )
2 2 2

T
1 1 1 1 1

ˆ 0
4 4 4n n n n n n
Δt Δt Δtα+ + + + ++ + − + =qMq Φ Φ λ Q Mq (22) 

 
2 2

1 1
ˆ 0

2 4 4n n n
Δt Δt Δt

+ +− + =p h p  (23) 

 
or, symbolically ( )1 0n+ =f x , with { }T T T=x q p . 

In order to obtain the solution of this nonlinear system, 
the iterative Newton-Raphson method is applied, 

 

 
( ) ( )1i i

i

∂
∂ +

⎡ ⎤
Δ = − ⎡ ⎤⎢ ⎥ ⎣ ⎦

⎣ ⎦

f x
x f x

x
 (24) 

 
being the residual vector, 
 

 ( )
T T *2

4
Δt α⎧ ⎫+ + −

=⎡ ⎤ ⎨ ⎬⎣ ⎦ −⎩ ⎭
q qMq Φ Φ Φ λ Q

f x
p h

 (25) 

 

and the approximated tangent matrix 
( )∂

∂
⎡ ⎤
⎢ ⎥
⎣ ⎦

f x
x

, 

 

 
( )

2 2
T

2 4 4

2 2 2 2np

Δt Δt Δt

Δt Δt Δt Δt

α
⎡ ⎤∂

+ + + −⎢ ⎥∂⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛ ⎞∂ ∂ ∂

− + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

q q
QM C Φ Φ K
p

h h hI
q q p

 (26) 

 
where np is the number of elements in the vector of 
pressures p, and Inp is the identity matrix of such a 
dimension. It must be pointed out that the tangent matrix is 
not symmetric any more, as it was when dealing with the 
multibody problem alone. This fact will negatively affect to 
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the efficiency, since specific solvers for symmetric matrices 
are faster. 

Once the Newton-Raphson iteration process 
converges, the resulting velocities and accelerations should 
be projected into their respective constraint manifolds in 
order to achieve constraint satisfaction at velocity and 
acceleration levels. The projection equations are exactly the 
same as those presented in Eq. (14-15). 
 
 
4. THE EXAMPLE 

The example to test this approach is shown in Fig. 2. 
The solution obtained by means of the proposed 
formulation is confronted with those obtained through other 
approaches. Comparison with the approach consisting of 
kinematically guide the actuator will enable to assess the 
penalty in efficiency incurred by the unified approach. 
Comparison with a co-integration scheme will allow to 
appraise the accuracy achieved by the unified approach. 
 

 

Figure 2: THE EXAMPLE. 
 

The rod, with length L=1 m and mass m=200 kg 
uniformly distributed, is pinned to the ground at one of its 
ends in A, and has attached a point mass of M=250 kg at 
the other end. The system is subject to gravity. A hydraulic 
actuator is pinned to the center point of the rod at one end, 
and to the ground at the other end in B. The piston area is 
A=0.0065 m2, and the total cylinder length is l=0.442 m. 
Friction in the actuator has been considered through a 
linear viscous model, with coefficient c=105 Ns/m. 
Coordinates of the fixed points are A(0,0) and B( 3 / 2 ,0). 
Initially, the system is at rest, the angle between the rod and 
the ground is 30º, and the two cylinder chambers have the 
same volume. 

The multibody system is modeled with the five 
variables grouped into vector q, while the hydraulic 
actuator is modeled with the two pressures of vector p, 
 

 { }
{ }

T
1 1 2 2
T

1 2

x y x y s
p p

=
=

q
p

 (27) 

 
where 1x , 1y  are the Cartesian coordinates of point 1, 
located in the middle of the rod, 2x , 2y  are the Cartesian 
coordinates of point 2, coincident with the point mass 
rigidly attached to the end of the rod, s is the variable 
length of the hydraulic actuator, and p1, p2 are the pressures 
in the upper and lower chamber of the cylinder, 
respectively. The meaning of all these variables is also 
illustrated in Fig. 2.  

According to the described data, the term of the 
applied forces vector Q of Eq. (17) due to the hydraulic 
actuator is, 
 
 ( ) ( )2 15 p p A cs= − −Q  (28) 
 

In what respects to the second set of equations in Eq. 
(17), i.e. the pressure equations, they are stated as follows, 
 

 
( ) ( )

( ) ( )

1 11
1 1

1

2 22
2 2

2

2 2

2 2

P T
i d P o d T

P T
o d P i d T

p p p p
p h As A c A c

Al

p p p p
p h As A c A c

Al

β
δ δ

ρ ρ

β
δ δ

ρ ρ

⎡ ⎤− −
⎢ ⎥= = + −
⎢ ⎥⎣ ⎦
⎡ ⎤− −
⎢ ⎥= = − + −
⎢ ⎥⎣ ⎦

(29) 

 
where βi is calculated according to Eq. (3), 1l  and 2l  are 
the variable lengths of the upper and lower chamber, 
respectively, iA  and oA  are the variable valve areas 
connecting the cylinder chambers to the pump and to the 
tank, respectively, cd=0.67 is the valve discharge 
coefficient, ρ=850 kg/m3 is the fluid density, pP=7.6 MPa 
and pT=0.1 MPa are the pump and tank pressures, 
respectively (considered constant in this example), and, 
finally, Pδ  and Tδ  are 0 in case the quantity inside the 
square root is negative, and 1 otherwise. 

Given that, as said above, the two cylinder chambers 
have equal volume at initial conditions, the variable lengths 
of the upper and lower chamber are obtained as, 
 

 1

2

0.5
0.5

o

o

l l s s
l l s s

= + −
= + −

 (30) 

 
with os =0.5 m the initial length of the actuator. 

The variable valve areas iA  and oA  take, for each 
time instant, the following values, 
 

 ( )
0.0005

0.0005 1
i

o

A
A

κ
κ

=
= −

 (31) 
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where κ is the spool displacement or valve control 
parameter, i.e. the input which controls the system motion. 

The initial values of the problem variables are set so 
that the system is in static equilibrium. This serves to avoid 
instabilities in the integration process. The values of the 
position variables, q, are easily obtained from the initial 
configuration of the system described above. The initial 
velocities, q , are set to zero, since the system is at rest. 
The initial values of the pressures, p, are calculated as the 
solution of a nonlinear system formed by the three 
following equations: 
 

 
( ) ( )2 1

1

2

2
0
0

M m g p p A
h
h

+ = −

=
=

 (32) 

 
where g=9.81 m/s2 is the value of gravity. The solution of 
the nonlinear system of Eq. (32) yields the initial values of 
the pressures p1 and p2 and the initial value of the spool 
displacement κ, so that static equilibrium is guaranteed. 

In order to build the combined dynamic equations 
provided in Eq. (17), some additional terms are required. 
The mass matrix is, 

 

 

0 0 0 0 0
0 0 0 0 0

0 0 0 0
3

0 0 0 0
3

0 0 0 0 0

mM

mM

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥
⎣ ⎦

M  (33) 

 
the applied forces are, 

 

 

( )2 1

0

0
mg

Mg
p p A cs

⎧ ⎫
⎪ ⎪−⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎪ ⎪

− −⎪ ⎪⎩ ⎭

Q  (34) 

 
and the constraints vector is, 

 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

2 2 2
1 1

2 1

2 1
2 2 2

1 1

(0.5 )
2
2

A A

A A

A A

B B

x x y y L
x x x x
y y y y

x x y y s

⎧ ⎫− + − −
⎪ ⎪

− − −⎪ ⎪= ⎨ ⎬− − −⎪ ⎪
⎪ ⎪− + − −⎩ ⎭

Φ  (35) 

 
where the first equation imposes the constant length of 
segment A1 , the second and third equations indicate that 
vector A2  is proportional to vector A1 , and the fourth 
equation relates the variable actuator distance s with the 
Cartesian coordinates of points 1 and B. 

Finally, in order to build the approximate tangent 
matrix of Eq. (26), the following terms are also required. 
The stiffness matrix K is null in this example, while the 
damping matrix C has only got the non-zero element due to 
the viscous damping at the actuator, C(5,5)=c. Moreover, 
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where D and E are obtained as, 
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l p p p p
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δ δ

⎛ ⎞
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

⎛ ⎞
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

 (37) 

 
A 10 s maneuver is defined as the case-study: starting 

from rest initial conditions, the spool displacement κ is 
varied according to the following law: 
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where κo is the initial control parameter value which 
provides static equilibrium conditions, as explained before. 

Chronologically, the proposed unified scheme was 
first run, and the histories of the cylinder length s and its 
first and second time-derivatives were stored during the 
simulation. 

In the second simulation executed, a program which 
implements the simplified approach (kinematic guidance of 
the actuator) was run. The histories of the cylinder length 
and its derivatives, stored in the previous simulation, were 
recovered and used to kinematically guide the coordinate s 
of the multibody problem, so that the same motion of the 
system was ensured. It must be pointed out that this second 
simulation is not a kinematic simulation, but a dynamic one 
provided by the formalism described in Section 2, in which 
the value of the problem variable associated to the cylinder, 
s, is imposed by means of an additional kinematic 
constraint. Therefore, the constraints vector is not that 
shown in Eq. (35), but the following one, 
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⎪ ⎪−⎩ ⎭

Φ  (39) 

 
Finally, a third simulation implementing a multi-rate 

integration scheme (different integrators and time steps) 
was carried out. The multibody problem conducted the 
integration. A time step of 10 ms was adopted for the 
multibody integration, while the hydraulic problem was 
integrated through a forward Euler integrator with a time 
step of 0.1 ms. These time-step sizes imply that, at every 
iteration of the multibody problem, the hydraulic problem 
must be integrated 100 times. 

The integration of the hydraulic expressions given in 
Eq. (29) implies to assume a constant elongation velocity of 
the actuator during the multibody time step. This velocity is 
approximated by the length variation divided by the time-
step size: 
 

 
( ) ( )1n ns t s t

s
t

+ −
=

Δ
 (40) 

 

The Newton-Raphson scheme of the multibody 
integration yields, at every iteration step, a variation of the 
elongation at time tn+1, so that a new integration of the 
hydraulic equations is required. Therefore, the total time of 
the simulation will be larger than in the case of the unified 
approach. However, the theoretically more accurate 
solution will serve to validate the solution provided by the 
scheme proposed in this paper. 

The results obtained from the three simulations, along 
with their discussion, are addressed in the next Section. 

 
 
5. RESULTS AND DISCUSSION 

Fig. 3 shows the histories of the cylinder length, s, and 
its first derivative, s . Fig. 4 plots the difference between 
the elongation, s, obtained by both the unified method and 
the multi-rate integration. Fig. 5 presents the histories of 
the pressures 1p  and 2p . The grey line provides the 
solutions of the multi-rate integration while the black line 
represents the solutions of the unified method. A detail of 
the discrepancies between both solutions is presented in 
Fig. 6. 

Fig. 7 illustrates the actuator force, including the 
damping losses. Fig. 8 plots the histories of the total 
energy, the kinematic energy, the potential energy, and the 
work performed by the actuator (including the damping 
losses again). Fig. 9 gathers the violation of the constraints 
and their first and second derivatives (in all the three cases, 
the plotted magnitude is the norm of the corresponding 
vector). 

Solutions in position, velocity and acceleration of the 
cylinder show practically no discrepancies between the two 
methods. Because of this, only one single line can be 
appreciated in the plots and the difference between the 
solution provided by multi-rate and unified integration is 
detailed in Fig. 4. As it can be appreciated, this difference 
is under 0.1 mm in the positions. 

In order to validate the solution of the unified scheme, a 
comparison of the evolution of the pressures is depicted in 
Fig. 5 and a detail of the pick value of pressure p1 is 
provided in Fig. 6. As explained before, the hydraulic 
problem is stiff, this behavior being evidenced in Fig. 6. 
The multi-rate scheme employs a smaller integration step  
for the hydraulic problem that yields a smoother solution. 
But, in general terms, the solution of the unified scheme is 
accurate and oscillations are not relevant. 

It must be said that, although typical values of the 
penalty factor α (see Eq. (5)) are in the range 107-109, in 
this case a value of α=1010 has been shown to provide the 
best convergence properties for the Newton-Raphson 
iteration of the unified scheme. The need of such a large 
penalty factor is due to the stiffness introduced in the 
system by the hydraulic equations. 
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Figure 3: HISTORIES OF THE CYLINDER LENGTH, s, AND ITS 

FIRST DERIVATIVE, s . 
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Figure 4. DIFFERENCE BETWEEN THE HISTORIES OF THE 
CYLINDER ELONGATION OBTAINED BY MULTI-RATE AND 

UNIFIED METHOD. 
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Figure 5: HISTORIES OF THE PRESSURES 1p  AND 2p . 
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Figure 6: DETAIL OF THE DISCREPANCIES BETWEEN 1p  
VALUES OBTAINED BY MULTI-RATE (GREY) AND UNIFIED 

METHOD (BLACK).  
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Figure 7: HISTORY OF THE ACTUATOR FORCE, INCLUDING 

THE DAMPING LOSSES. 
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Figure 8: HISTORIES OF THE TOTAL, KINEMATIC AND 

POTENTIAL ENERGY, AND ACTUATOR WORK. 
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Figure 9: VIOLATION OF THE CONSTRAINTS AND THEIR FIRST 

AND SECOND DERIVATIVES. 
 
In what respects to the time-step size of integration, the 

plotted results have been obtained with a fixed time-step of 
10 ms for the unified integration scheme, the multibody 
part of the multi-rate integration scheme, and the simplified 
simulation. Of course, smaller time-step sizes have been 
tested too and can be used without problem. The integration 
time-step size for the hydraulic problem at the multi-scale 
scheme has been set at 0.1 ms. Larger time steps did not 
reach convergence. 

The number of iterations required for convergence with 
α=1010 and Δt=10 ms has been two or three at the more 
demanding instants of the simulation (around t=2 s and t=6 
s) and just one for the rest. The plot of the total energy in 
Fig. 6 shows good conservation properties: there is a 
variation of 1 J in the total energy during the simulation, 
which is a small quantity face to variations of potential 
energy and actuator work of around 1000 J. The plots of 
constraints violation at position, velocity and acceleration 
levels in Fig. 7 prove that constraint satisfaction is kept 
within very strict limits. Therefore, the algorithm has 
shown a good behavior for such a large time-step size of 
integration, which confirms that it conserves the robustness 
already demonstrated in multibody simulations. 
 

Table 1: CPU-TIMES FOR THE THREE COMPARED 
APPROACHES. 

 
Simulation CPU-time (s) 

Kinematic guidance 0.338 

Unified integration 0.389 

Multi-rate integration 11.634 
 

Regarding the efficiency, CPU-times measured for the 
three simulations performed are shown in Table 1. The 

programs were developed and run in Matlab computing 
environment, which means that absolute CPU-times are not 
representative, yet they serve for comparison among the 
different approaches. 

In Table 1, the increase in computational cost motivated 
by the inclusion of the hydraulic equations in the unified 
scheme is around 20% with respect to the simplified 
simulation, that only considers the multibody problem. 
From the theoretical point of view, the increase in 
computational cost is basically due to two factors: on the 
one hand, to the larger problem size, since the pressures are 
added to the problem variables, and, on the other hand, to 
the non-symmetric character of the new approximated 
tangent matrix of the Newton-Raphson iteration. 

The comparison between the unified scheme and multi-
rate approach is very favorable to the unified scheme. 
Multi-rate integration with the mentioned time-step sizes 
implies to evaluate and integrate the hydraulic equations 
100 times at every iteration within a time step of the 
multibody integration. The use of a more stable integrator 
for the hydraulic problem might lead to a smaller difference 
between both methods, but the obtained results highlight 
the fact that the smaller step size of the hydraulic problem 
notably slows down the integration. 

Evidently, these trends require further confirmation in 
the simulation of large and complex machines, like for 
example the full model of an excavator, but the analysts 
interested in moving from the simplified or multi-rate 
integration to the unified approach may have this study into 
account. 
 
 
6. CONCLUSIONS 

At the view of the results, the following conclusions can 
be established: 
• The augmented Lagrangian formulation traditionally 

used to address multibody dynamics problems 
conserves its robustness when facing combined 
multibody and hydraulic dynamics problems in a 
unified approach. For the academic example studied, a 
large time-step size of 10 ms could be taken, but a high 
penalty factor of 1010 was required in order to keep 
good convergence properties, due to the stiffness of the 
hydraulic equations. 

• The increase in computational cost motivated by the 
inclusion of the hydraulic equations when compared 
with a simplified modeling of the hydraulic problem 
through kinematic guidance of the actuators is 
moderated, and due mainly to the larger resulting 
problem size and the non-symmetric character of the 
approximated tangent matrix. A 20% increase was 
measured for the academic example considered. 
Therefore, it can be affirmed that the efficiency is not 
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substantially altered when moving from a simplified to 
a fully-coupled approach. 

• The unified approach is largely more efficient than the 
multi-rate integration scheme due to the lower number 
of evaluations of the hydraulic equations required. 
However, discrepancies between the solutions 
provided by both methods are not relevant. 
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