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Abstract— Contact plays a key role in a large number
of multibody system dynamics applications. The treatment
of contact is still an open problem and a challenging topic
for the multibody system dynamics community. There are
two different aspects that must be taken into consideration
to successfully simulate the behavior of multibody systems
with contacting bodies. First, the contact model chosen has
to be adequate for the applications to tackle. Second, in-
dependently of the contact model chosen, the geometrical
detection of the contact events is necessary to feed the con-
tact model.

In this work, a general contact algorithm for rigid bod-
ies is described, which includes continuous contact force
model and contact detection between complex 3D geome-
tries given by CAD models.

Keywords: Contact, detection, multibody dynamics.

I. Introduction

The multibody system dynamics methods, constitute
general formalisms to write and solve the equations of mo-
tion of any mechanism or machine. There are a wide variety
of formalisms that lead to different equations of motion and
solution methods, see e.g. [1], but independently of the for-
malisms chosen, the forces and/or constraints of the system
are always inputs to the problem.

A large number of industrial applications of multibody
system dynamics require proper contact algorithms since
contacts between bodies of the system (or between bodies
and the environment), govern the dynamics of the system.
To take into account the contact in the equations of motion
is not so simple and can be divided in two different aspects:
first, the contact model chosen has to be accurate, stable
and robust enough for the applications to tackle; second,
independently of the contact model chosen, the geometrical
detection of the contact events is a previous condition for
any contact model.

In a broad sense there are two families of methods to
solve the normal contact problem in multibody systems
composed of rigid bodies, see [2], [3]: the discontinu-
ous and the continuous approaches. The discontinuous ap-
proaches are impulsive and for this reason suited to impact
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forces, while the continuous approaches are better suited
to applications in which it is expected to occur permanent
contacts or at least contacts of a significant duration; the
normal force model described in this work is continuous
and based on regularized forces. Moreover, it is worth to
mention that, up to these days, there is not a universally
accepted model to calculate the friction force between bod-
ies under dry conditions. In this work, a tangential friction
model developed by the authors in a previous work is de-
scribed [4]: the model includes dry friction, sticktion at low
velocities and a viscous component.

Independently of the contact model chosen, it is neces-
sary to detect the contacts which turns to be a geometrical
problem, see e.g. [5], [6]. In many cases, it is possible to
make some assumptions, for example when the exact ge-
ometry of the bodies are known, it is possible to simplify
the task of detecting the contacts between bodies by using
the analytical equations of the geometry or by replacing the
actual one by surrounding primitives like spheres or boxes.
Nevertheless, when the exact geometries of the bodies are
not known (because they are read from CAD models) or
when the geometries are very complex, more general strate-
gies have to be developed in order to detect the contacts and
carry out all the calculations necessary to feed the contact
model. The algorithms described in this work are able to
detect contacts between bodies with complex 3D geome-
tries given by CAD models in triangular mesh format.

Between the large number of formulations of the equa-
tions of motion existent (see e.g. [1]), the penalty and aug-
mented Lagrangian formulations, [7] [8], are characterized
by transforming the constraints into forces proportional to
the constraints violation. This technique, used along this
work, is similar and compatible to that of the continuous
force models for normal contact,which relate the force and
deformation of the bodies in contact to avoid the penetra-
tion between them.

II. Multibody formulation

The multibody formulation chosen for this work is an
index-3 augmented Lagrangian with projections of veloc-
ities and accelerations onto the constraints manifolds. As
integration scheme, the implicit single-step trapezoidal rule
has been adopted. The mentioned formulation was exten-
sively described in Cuadrado (2001 and 2004).
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III. Description of the contact model
The contact forces approach proposed for this work com-

prises two different models: the normal force model and the
tangential force model. The two sub-models are presented
separately in subsequent sections. A more detailed descrip-
tion of the contact model is given in [4].

For simplicity reasons, the contact model is going to be
explained for the collision of a spherical and a flat body but
it is easily generalized to bodies with arbitrary shapes.

A. Normal force model

The normal force model chosen for this work was the
Hunt-Crossley model [9]. The model is suited to collisions
between massive solids for which the assumption of quasi
static contact holds and it can be supposed that the deforma-
tion is limited to a small region of the colliding bodies while
the remainder of them are assumed to be rigid. The expres-
sion for the normal force, after some calculations, has the
following form,

Fn = kn δe

(
1 +

3 (1 − ε)
2

δ̇

δ̇0

)
n (1)

where kn is the equivalent stiffness of the contact and
depends on the shape and material properties of the col-
liding bodies, e is the Hertz’s exponent, δ = Rsph −
|pcenter − pcontact| is the indentation, δ̇ its temporal
derivative, δ̇0 is the relative normal velocity between the
colliding bodies when the contact is detected, ε is the coef-
ficient of restitution, and n is the direction of the force (see
Fig.( 1)). The subscript “n” comes from “normal”.

The value of kn depends on the shape and materials of
the colliding bodies.

In figure 1 a collision between a spherical and a flat body
is represented.

B. Tangential force model

The tangential force model developed for the friction
force is based on Coulomb’s law including sticktion. More-
over a viscous term is added to the dry friction force. The
general form of this force is the following,

Ft = κ Fstick + (1 − κ) Fslide − μviscvt (2)

In the previous expression, the first two terms constitute
the dry friction, while the third term accounts for the vis-
cous friction. For the smooth transition between sticking
and slipping the dry friction force is divided in two com-
ponents coupled by a smooth function, following the ideas
proposed in [10]. The subscript “t” comes from “tangen-
tial”.

In (2), μvisc is the viscous damping coefficient, Fstick

and Fslide are the components of the sticktion and slipping
forces, κ is a smooth function of the tangential velocity, v t,
which is defined in terms of the central point of the contact

pcenter

pcontact

contact region

sphere

plane nFn

pcontact

pcenter

nFn

R
sp

h

Fig. 1. Normal contact between sphere and plane: isometric and front
views.

region, pcontact, and the normal vector at the contact,n , as
follows.

vt = ṗcontact −
(
nT ṗcontact

)
n (3)

The mentioned function, κ, has to match the following
conditions,

κ =
{

0; |vt| >> vstick

1; |vt| = 0

}
(4)

where vstick is a parameter of the model accounting for the
velocity of the stick-slip transition. A good choice for the
transition function κ was given in [10] and has the follow-
ing form.

κ = e−(vT
t vt)/v2

stick (5)

Equation (2) showed that the total force is composed of
three contributions: the sliding dry friction force at high ve-
locities, the sticktion force at low velocities and the viscous
friction force. The sliding force is given by the classical
Coulomb expression, while the sticktion force is considered
by means of viscoelastic elements acting between the col-
liding bodies. To see the detailed expressions of the sliding
and sticktion forces see [4].

IV. Contact detection algorithms
The algorithms described in this section perform the de-

tection of the existent contacts between bodies. Moreover,
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Fig. 2. Tangential contact between sphere and plane.
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Fig. 3. Body mesh.

for each one of the contacts found, they perform the calcu-
lation of the necessary data to feed the contact model de-
scribed in section III. The bodies have complex 3D geome-
tries given by CAD models in triangular mesh format. All
the existent CAD packages have translators from the native
format to triangular mesh formats like obj or stl.

The mathematical representation of the triangular mesh
of the body i, with nv vertexes and nf triangular faces, ex-
pressed in the local framework of the body, is the following
(see figure 3).

s̄i
v; 1 ≤ v ≤ nv; nv ≥ 3 (list of vertexes) (6)

f i
f =

⎡
⎣ f i

f1

f i
f2

f i
f3

⎤
⎦ ; 1 ≤ f ≤ nf ; nf ≥ 1 (list of triangles)

(7)
Thus, the three vertexes that compose the face f of the

body are obtained by replacing each one of the indexes from
(7) in (6): s̄i

fi
f1

, s̄i
fi

f2
and s̄i

fi
f3

.

The vertexes list of the mesh in global coordinates is ob-
tained by means of the body transformation matrix A i, us-
ing homogeneous coordinates.

s∗i
v = Ais̄∗i

v ⇒
[

si
v

1

]
=
[

Ri si
0

0 1

] [
s̄i
v

1

]
(8)

It will be necessary, for some of the algorithms of this
section, to express the vertexes of a body in the local frame
of other body. Thus, the vertexes of body i in the local
frame of body j.

s̄∗i,j
v =

(
Aj
)−1

s∗i
v =

(
Aj
)−1

Ais̄∗i
v = Ai,j s̄∗i

v (9)

where,

(
Aj
)−1

=
[ (

Rj
)T − (Rj

)T
sj
0

0 1

]
(10)

Ai,j =

[ (
Rj
)T

Ri
(
Rj
)T (

si
0 − sj

0

)
0 1

]
(11)

Replacing equation (11) in equation (9).

s̄i,j
v =

(
Rj
)T (

si
0 − sj

0

)
+
(
Rj
)T

Ris̄i
v (12)

A. CAD models preprocessing
This task is performed only once at the beginning of the

simulation and carries out the preprocessing of the CAD
models, which includes basically the calculation of the
neighbors of each face and the creation of the data struc-
tures to calculate the pairs of triangles in collision. As was
mentioned before, the geometry of each body, is given by a
mesh of triangles.

B. Calculation of the collision pairs
For this task the open source library Opcode (see [?])

was partially used. The tree structures to order and sub-
divide the faces were taken from Opcode, but the algo-
rithms to detect if two triangles collide were completely
reprogrammed, since the original algorithms from Opcode
offer inaccurate (and sometimes completely incorrect) re-
sults, not valid for multibody dynamics. The algorithms
described in this section, return a list of np disordered col-
liding triangle pairs between bodies i and j (see figure 4)
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Fig. 4. Collision pairs and segments between bodies i and j

and a list of np disordered intersection segments between
the pairs, expressed in the local frame of body j.

pairsij =
{

f i
k, f j

k

}
; 0 ≤ k ≤ np (list of pairs) (13)

isects
ij,j

=
{
ik,1ik,2

}
; 0 ≤ k ≤ np (list of segments)

(14)
In equations (13) and (14) the super index ij , indicates

collision between bodies i and j, while in equation (14) the
over line along with the superindex ,j indicates local coor-
dinates of body j.

B.1 Box-Box overlap algorithm

The original Opcode algorithm to test AABB (Axis
Aligned Bounding Box) with AABB collisions offered in-
correct results for local aligned or almost local aligned
boxes. The new algorithm checks this alignment.

B.2 Triangle-Triangle overlap algorithm

The original Opcode algorithm was based on projections
while the new programmed algorithm is based on the direct
solution of edge-triangle intersections which is much more
robust. Moreover the new algorithm was programmed in
double precision. The intersection of the triangles is typ-
ically a straight line segment, the new algorithm includes
also the calculation of the extreme points of the segment.

In figure 5 the triangles pi (from body i) and q j (from
body j), are intersecting. The triangles are composed of the
vertexes f i

p and f j
q respectively. To check the intersection

between them, it is enough to check each edge of triangle p i

against qj and vice versa. If the triangles overlap, two edge-
triangle intersections exist. To illustrate the edge-triangle

test, the intersection between edge f j
q1f

j
q2 and triangle pi is

calculated here.

q0=
jsfq1
j

q1 =
jsfq2
j

q2 =
jsfq3
j

p0 =
i,jsfp1
i

p1 =
i,jsfp2 
i

p2 =
i,jsfp3
i
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triangle p i

(Body i)
triangle q j

(Body j)

Fig. 5. Triangle-triangle intersection

Let’s call p0, p1, p2 the vertexes of triangle pi and q0,
q1, q2 the vertexes of triangle qj . Using equation (12), it
is possible to express all the vertexes in the local frame of
body j.

p0 = s̄i,j
fi

p1
=
(
Rj
)T (

si
0 − sj

0

)
+
(
Rj
)T

Ris̄i
fi

p1

p1 = s̄i,j

fi
p2

=
(
Rj
)T (

si
0 − sj

0

)
+
(
Rj
)T

Ris̄i
fi

p2

p2 = s̄i,j

fi
p3

=
(
Rj
)T (

si
0 − sj

0

)
+
(
Rj
)T

Ris̄i
fi

p3

(15)

q0 = s̄j

fj
q1

q1 = s̄j

fj
q2

q2 = s̄j

fj
q3

(16)

The equations of triangle pi.

rt = p0 + μ1u1 + μ2u2

⎧⎪⎨
⎪⎩

μ1

l1
+

μ2

l2
≤ 1

μ1 ≥ 0
μ2 ≥ 0

⎫⎪⎬
⎪⎭

u1 =
p1 − p0

l1
; u2 =

p2 − p0

l2
l1 = |p1 − p0| ; l2 = |p2 − p0|

(17)

The equations of edge f j
q1f

j
q2.

re = q0 + ηv; 0 ≤ η ≤ d

v =
q1 − q0

d
; d = |q1 − q0| (18)

Making rt = re.

p0 + μ1u1 + μ2u2 = q0 + ηv ⇒

[−v u1 u2]

⎡
⎣ η

μ1

μ2

⎤
⎦ = [q0 − p0] ⇒

Ax = b

(19)

There are 3 possible situations.

4



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011 A8_496

1. rank(A) = 3 = rank([A|b]). The edge intersects the

plane which contains the triangle. In case
μ1

l1
+

μ2

l2
≤ 1

with, μ1, μ2 ≥ 0 and 0 ≤ η ≤ d the intersection lays into
the triangle, otherwise the edge is discarded. In case of
intersection, the intersection point can be easily calculated
replacing η in (18).
2. rank(A) = 2 = rank([A|b]). The edge is contained in
the plane. The triangles might be coplanar or adjacent. The
edge is discarded.
3. rank(A) = 2 �= rank([A|b]) = 3. The edge is par-
allel to the plane which contains the triangle. The edge is
discarded.

The three edges of triangle qj are successively checked
against triangle pi and after, the three edges of pi against
triangle qj . In case two intersections are obtained, the tri-
angles overlap and the intersection, i1i2, is given by the
segment composed of the intersection points.

C. Contact regions contour closure algorithm

From the disordered colliding triangles list (13) of sec-
tion IV-B, this algorithm performs the closure of the con-
tours of the different contact regions, grouping together the
collision pairs by regions and ordering the collision pairs of
each region (and its contour segments) in a way that per-
mits to follow the contours from a segment to the adjacent
one. The algorithm uses the topological information about
the neighbors, calculated in section IV-A, to find out which
collision pairs belong to the same region and to order the
segments inside each region.

Once the segments are grouped by regions and the seg-
ments of each region are ordered, the algorithm merges the
adjacent segments removing the coincident vertexes in (14),
by means of a simple numerical procedure. Finally, the al-
gorithm returns a list with the existent nc 3D contours given
by their ordered vertexes.

cij,j
c =

[
rc,1 rc,2 . . . rc,nic

]
;

0 ≤ c ≤ nc (list of contours)
(20)

In (20), nic is the number of vertexes of the contour c,
the super index ij , indicates collision between bodies i and
j, and the over line along with the superindex ,j indicates
local coordinates of body j.

D. Contact plane calculation algorithm

For each one of the contact regions identified in section
IV-C, the algorithm calculates the equations of the contact
plane that better fits the 3D contour, (20), of the region (see
figure 6).

Replacing the vertexes of the contour given by (20) in the
equations of the contact plane.

r0

nBody i

Body j

v0

n v0

rc,1 rc,2 

rc,3 ...rc,nic

Fig. 6. Contact plane calculation

⎡
⎢⎢⎢⎣

rT
c,1 1

rT
c,2 1
. . . . . .

rT
c,nic

1

⎤
⎥⎥⎥⎦
[

n
d

]
=

⎡
⎢⎢⎢⎣

0
0

. . .
0

⎤
⎥⎥⎥⎦⇒ Ax = 0 (21)

Where n is a vector normal to the contact plane and
d = − rT

c n being rc a point that belongs to the contact
plane.

In general the system of equations (21) has the only so-
lution n = 0; d = 0, which obviously is not the desired
solution. It is necessary to impose the condition |n| = 1
to obtain an incompatible system of equations that can be
solved by least squares.

Writing the least squares system from (21).

(
ATA

)
x = 0 (22)

Factoring the matrix
(
ATA

)
and imposing the value (for

example equal to 1) of the component of x corresponding
to the minimum pivot of the factorization, the equations of
the contact plane are obtained. Finally x has to be scaled to
fulfill the condition |n| = 1, obtaining the final equations
of the contact plane.

nTr + d = 0 (23)

Where n is the unit normal vector to the plane and d is
the distance from the plane to the origin measured along the
normal vector.

All the calculations described in this section were per-
formed with the contour of equation (20) expressed in the
local reference frame of body j. The normal vector trans-
formed to the global reference frame is obtained by means
of the rotation matrix of body j.

n = Rjn (24)

E. Contact region centroid algorithm

For each one of the contact regions identified in section
IV-C, the algorithm described in this section, calculates the
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centroid of the projection of the contact region into the con-
tact plane.

The centroid of a general 2D polygon of N vertexes, con-
tained in the X-Y plane has the following expression.

r�c =
1

6A

N−1∑
i=0

⎡
⎣ (xi + xi+1) (xiyi+1 − xi+1yi)

(yi + yi+1) (xiyi+1 − xi+1yi)
0

⎤
⎦

A =
1
2

N−1∑
i=0

(xiyi+1 − xi+1yi)

(25)

Nevertheless the contour, c, of equation (20) does not
constitute a 2D polygon since its vertexes do not belong,
in general, to the same plane. To assimilate the contour to
a 2D polygon, the vertexes can be projected into the con-
tact plane calculated in section IV-D. Moreover, the result-
ing 2D polygon has to be contained in the X-Y plane, what
can be achieved by means of the transformation matrix M t,
which transforms the X-Y plane into the contact plane of
equation (23).

The mentioned transformation matrix has the following
expression.

Mt =
[

Mr r0

0 1

]
Mr =

[
v0 n ∧ v0 n

] (26)

Where r0 and v0 are a point and a vector contained in the
contact plane, respectively, that can be chosen like follows.

r0 =

⎡
⎣ −d/nx

0
0

⎤
⎦ ; v0 =

⎡
⎣ −ny

nx

0

⎤
⎦ ; nx = max(nx, ny, nz)

r0 =

⎡
⎣ 0

−d/ny

0

⎤
⎦ ; v0 =

⎡
⎣ ny

−nx

0

⎤
⎦ ; ny = max(nx, ny, nz)

r0 =

⎡
⎣ 0

0
−d/nz

⎤
⎦ ; v0 =

⎡
⎣ nz

0
−nx

⎤
⎦ ; nz = max(nx, ny, nz)

(27)
Being nx, ny, nz the components of n. Expressing the

contour in the local frame of the plane.

cij,�
c = MT

r

(
cij,j

c − [
r0 r0 . . . r0

])
(28)

Replacing the x and y components of (28) in (25), the
centroid r�c , in local coordinates of the plane, is obtained.

Finally, the centroid expressed in global coordinates has
the following expression.

rij
c = sj

0 + Rj
(
r0 + Mrr�c

)
(29)

F. Maximum indentation calculation algorithm

For each one of the contact regions identified in section
IV-C, the algorithm calculates the maximum indentation (or
inter-penetration), δ (see figure 1). This algorithm travels
along the colliding triangles (equation (13)) and their neigh-
bors looking for the maximum indentation. In order to dis-
tinguish the faces of the first body that are inter-penetrating
the second, it is necessary to check, for each neighbor not
belonging to the colliding triangles list, two conditions: 1)
the distance of each vertex of the triangle to the contact
plane, calculated in section IV-D, is negative and 2) the pro-
jection each one of the vertex of the triangle into the contact
plane lies inside the projected contact region contour of sec-
tion IV-C (see figure 6). Between the lists of colliding and
internal triangles of each body, the algorithm looks for the
maximum indentation.

The checking of the condition 1) is straightforward while
the condition 2) is checked by means of a ray casting algo-
rithm: the number of intersections of a ray departing from a
point is an even number if the point is outside the polygon,
and it is odd if the point is inside the polygon.

V. Numerical examples: anchor maneuver of a warship

The numerical example chosen for this work is the an-
chor maneuver of a warship. The hull of the warship is
static, while the anchor is composed of two bodies joined
by a revolute joint and tied to cable modeled by ideal con-
straints. The total mass of the assembly is 6414kg. The sys-
tem is subjected to the gravity forces, the constraint forces,
the tension force of the cable and the contact forces with the
hull of the warship. The anchor and the hull are modelled in
a commercial 3D CAD package and exported as triangular
meshes.

The maneuver is shown in figure V. The green vectors
represent the normal contact forces while the red ones rep-
resent the tangential forces due to the friction. The contact
model implemented was described in section III.

VI. Conclusions
A general strategy to simulate the dynamics of multibody

systems with contacting rigid bodies was described. The
description includes: a contact force model composed of
normal and tangential forces; a contact detection algorithm
for bodies with complex non-conforming 3D geometries
given by CAD models in triangular mesh format. Further-
more, the performance of the described strategy was tested
with a realistic example: the anchor maneuver of a warship.
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Fig. 7. Warship anchor maneuver
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