EMG Signal Smoothing Using Singular Spectrum Analysis
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Abstract

The application of Singular Spectrum Analysis (SSA) to the
smoothing of electromyographic (EMG) signals represents an
alternative to the use of traditional filtering and averaging
methods. SSA is a non-parametric technique that decomposes
original time series into set of additive time series each of which
can be easily identified as being part of the noise present in the
acquired signal. The procedure for EMG signal filtering is
compared to a classical approach based on the Butterworth
filter. The obtained results show that SSA can be successfully
and easily applied in practice to EMG signal smoothing.

1. Introduction

Surface electromyographic (EMG) signal is one of the
most important biological signals which directly reflect
human muscle activities since it is generated when the
muscle contract. Unfortunately, EMG signals  are
corrupted by noise, which may be generated by different
sources, such as the hardware employed for signal
amplification and digitization, the movement of
electrodes, cables and connectors during data collection
arising from the movement of the subject and the activity
of motor units distant from the detection point [1-7].

In addition, cross-talk, which refers to a signal
contribution originating from other muscles, can interfere
with the EMG signal of the muscle under investigation [1-
7]. Depending on the size and thickness of the muscle,
crosstalk can be more or less problematic. Regarding on
which muscles are investigated with surface EMG, also
ECG contamination can be significant [1-2]. Moreover,
external sources may cause deterministic contaminations
of varying frequency content (best known is the 50 or 60
Hz interference from the electric mains). Specially at low
contraction levels, the noise contribution in the signal can
be relatively large and limit the precision of EMG
amplitude estimates [1-3].

Contamination of the EMG signal can be reduced by
filtering or smoothing. Namely, in most biomechanics
studies the raw EMG signals are rectified and low pass
filtered or averaged, in order to obtain the so called
‘envelope EMG’. The choice of the smoothing filter

parameters should take into account the frequency content
of the desired information.

The filtering and smoothing of EMG signals has been
extensively treated in the literature [1-8]. Traditional
filtering techniques include Digital Butterworth filters,
and filters based on spectral analysis [1-2]. Recently,
advanced filtering techniques like the low-pass
differential (LPD) filter [3], Discrete Wavelet Transforms
[5-6], the Wiener Filter [7] and Empirical Mode
Decomposition [8] have been used. Nonetheless, the
drawback in these cases is the complexity of devising an
automatic and systematic procedure. A mother wavelet
function must be selected when using Discrete Wavelet
Transforms and the filtering function parameters must be
chosen when using the Wiener Filter.

The goal of this paper is to demonstrate the advantages of
smoothing methods based on Singular Spectrum Analysis
(SSA). SSA is a non-parametric technique that
decomposes an original time series into a number of
additive time series each of which can be easily identified
as part of the noise present in the acquired signal. This
work presents a heuristic smoothing procedure for
processing EMG signals based on SSA. The SSA
decomposition produces several independent components
in the frequency domain. The proposed procedure
eliminates the noise present in the signal in a simple and
intuitive way.

2. Singular Spectrum Analysis

Singular spectrum analysis is a novel non-parametric
technique of time series analysis based on principles of
multivariate statistics. It decomposes a given time series
into an additive set of independent time series. The set of
series resulting from the decomposition can be interpreted
as consisting of a trend representing the signal mean at
each instant, a set of periodic series, and an aperiodic
noise [9]. The original application of SSA was to extract
trends from climatic and geophysical time series [10] and
to identify periodic motion in complex dynamical systems
[11-12]. SSA has also been applied to the diagnosis of
machine failures using vibration signals [13] and to
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EMG-onset detection using SSA-based change-point
analysis [14].

The SSA method builds a Hankel matrix, called the
trajectory matrix, from the original time series in a
process called embedding. This matrix consists of vectors
obtained by means of a sliding window that traverses the
series. The trajectory matrix is then subjected to a
singular value decomposition (SVD). The SVD
decomposes the trajectory matrix into a sum of unit-rank
matrices known as elementary matrices. Each of these
matrices can be transformed into a reconstructed time
series. Elementary matrices are no longer Hankel
matrices, but an approximate time series may be
recovered by taking the average of the diagonals
(diagonal averaging).

The resulting time series are called principal components
[9]. The sum of all the principal components is equal to
the original time series. The objective is to obtain a
frequency decomposition of the original signal in which
the latent low-frequency signal (EMG amplitude) can be
detected in a simple fashion. The SSA decomposition
algorithm will be described in the following. A more
detailed explanation may be found in Golyandina et al.

[9].

The above description of SSA may be expressed in formal
terms as follows:

Step 1. Embedding
Let F:(fO’fl"“’fN—l)be the length N time series

representing the original signal. Let L be the window
length, with 1< L <N and L an integer. Each column of
the Hankel matrix corresponds to the “snapshot” taken by
the sliding window:

Xy = S Sror2)' s J =120 K

where K =N —L+1 is the number of columns, i.e., the
number of different possible positions of the said window.
The matrix X =(X;,X,,...,Xg) is a Hankel matrix
since all elements on the diagonal i+j = constant are
equal. This matrix is sometimes referred to as the
trajectory matrix. The form of this matrix is:

fO fl fN—L
i e Iy
X=| i M
fioo fis o o faa
fL—l fL—Z fN

Step 2. Singular value decomposition (SVD) of the
trajectory matrix.

It can be proven that the trajectory matrix (or any matrix,
for that matter) may be expressed as the summation of d
rank-one elementary matricesX=E;+E, +...+E,,
where d is the number of non-zero eigenvalues in
decreasing order A4;,4,,...,4; of the LxL matrix

S=X-X". The elementary matrices are given by
E =AU, -V," i=1,2,...d, U,U,,..,U, are the

1

corresponding eigenvectors, and the vectors V, are

1
obtained from V; =XT~U,-/\/ﬂ_l-for i=12,...,d. The
contribution of the first elementary matrices E; to the
norm of X is much higher than the contribution of the last
matrices. Therefore, it is likely that these last matrices
represent noise in the signal. The plot of the eigenvalues

in decreasing order is called the singular spectrum, and
gives the method its name.

Step 3. Reconstruction (diagonal averaging)

At this step, each elementary matrix E; is transformed
into a principal component of length N by applying a
linear transformation known as diagonal averaging or
Hankelization. The elementary matrices are not
themselves Hankel matrices, so that to reconstruct each
principal component the average along the diagonals i + j
= constant 1is calculated. The diagonal averaging
algorithm [9] is as follows:

Let Y be any of the elementary matrices E; of
dimension LxK, the elements of which are
Vi 1<i<L,1<j<K. The time series G (principal

component) corresponding to this elementary matrix is
given by:

1 k+l .
—— 2 Vo k-mi2 for0<k<L -1
k+1,=1"
1 L . .
g = F > Vo k-m+2 for L —1<k<K )
m=1
1 N7§*+1 P K <h<N
Yo, k=m+2 or K <k<
N =k kg2 -

Where L =min(L, K), K~ =max(L, K) and
N=L+K-1.

It can be shown that the squared norm of each elementary
matrix equals the corresponding eigenvalue, and that the
squared norm of the trajectory matrix is the sum of the
squared norms of the elementary matrices [9]. The largest
eigenvalues in the singular spectrum represent the large
amplitude  components in  the  decomposition.
Contrariwise, the low—amplitude noise components of the
signal are represented in the singular spectrum by the
smallest eigenvalues.

3. Methods

To test the performance of the SSA smoothing method, a
raw acquired EMG signal was smoothed using the SSA
algorithm implemented in Matlab 6.1 (Mathworks, Inc.).

Standard passive surface electrodes (B&L Engineering)
were used for signal detection from the Biceps Brachii,
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which is a very superficial muscle. The skin was abraded
and cleaned with alcohol and then electrodes were
positioned in the direction of muscle fibres, in the middle
zone of the muscle, far from innervated and tendinous
zones (see Figure 1). The Biceps Brachii muscle was
activated by a contraction during weightlifting of a 2.5 kg
weight in a movement confined into the sagittal plane.
The captures were performed in a movement that
comprises several weightliftings. EMG signals were
differentially amplified via a commercial amplifier (B&L
Engineering).

EMG signal was collected by means of Tektronix
TDS1002B and its software Tektronix TDS1002B which
permits the acquisition of the data and screen captures of
the recorded signal. This software allows the exportation
of the data to the PC to be treated. The SSA algorithm
was implemented in MATLAB.

The acquisition process was completed using a motion
capture system to compare and relate, in future works, the
smoothed EMG signal and the muscle excitation-
activation signal obtained by means of an inverse
dynamic analysis. The movement acquisition was
performed using 3 OptiTrack FLEX:V100R2 cameras and
the data collected was processed with the ARENA
Motion Capture software.

Figure 1. EMG electrodes distribution.

4. Results

The trajectory matrix of the EMG signal was generated by
sliding a window of 10 elements in length. The plot of the
eigenvalues of the matrix S (Singular Spectrum) is
plotted in Figure 2. This figure shows that the
contribution of the first eigenvalue to the norm of the
trajectory matrix is much higher than the contribution of
the rest. In fact, 61.09% of the norm of X is contributed
by the first two eigenvalues, whereas the rest are much
lower and vary slightly. This fact usually indicates that
these last eigenvalues represent noise, or at least a non-
periodic component without any latent structure as
indicated by Golyandina et al. [9].

Figure 3 shows a graphical representation of the
correlation matrix corresponding to the decomposition
obtained. Cell jj represents the correlation between

principal components 7 and j, gray-scale coded from black
for 0 (no-correlation) to white for /.

It has been pointed out that the signals reconstructed
using one elementary matrix at a time are called principal
components. The first five principal components for the
case under analysis are plotted in Figure 4. It is clear from
the figure that the first leading component represent the
main trend (note that the vertical axis is scaled differently
for each component), whereas the next four components
represent noise. The approximated reconstruction will
then be carried out using the first principal component.
The reconstructed signal is plotted in Figure 5(c) along
with the original raw signal.
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Figure 2. Singular spectrum of EMG signal obtained using a
window length L = 10.

Figure 3. Correlation matrix of the obtained decomposition.

Finally, the original raw signal was passed through a
second-order Butterworth filter with a 4 Hz cut frequency.
The superiority of SSA is particularly relevant in the
elimination of the so-called end-point errors, as seen in
Figure 5. Methods based on signal extension have been
proposed to reduce end-point error. No extension is
necessary in the case of SSA smoothing. Errors due to
this phenomenon are negligible.
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5. Conclusions

This paper introduces a novel practical procedure for
smoothing EMG signals based on the Singular Spectrum
Analysis decomposition. The main advantages of this
procedure are that it does not make any prior assumption
about the data being analyzed, no artificial information is
introduced into the filtered signal and that the access to
different time-scale components (principal components)
allows for a customized filtering required in different
applications.
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Figure 4. Individual reconstruction of the five leading
components (plotted in different scales) obtained from the SSA
decomposition of raw EMG signal (window length L = 10).
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Figure 5. (a) Original EMG signal. (b) Filtered signal using a 4
Hz cut frequency Butterworth filter. (c) SSA- smoothed signal.

The main drawback is that there are no fixed, objective
rules for selecting the window length. Nevertheless, the
results are not very sensitive to window length. Moreover,
the grouping strategy is usually clearly indicated by the
singular spectrum.
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