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Ferrol, A Corũna, 15403, Spain

Email: aluaces@udc.es

Florian Michaud
Dep. Ergonomy, Design and Mech. Eng.
University of Tech. Belfort-Montbeliard

Belfort, 90010, France
Email: florian.michaud@utbm.fr

Javier Cuadrado
Laboratorio de Ingenierı́a Mećanica
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ABSTRACT

To develop the geometric design of a ship’s hull that guar-
antees a correct anchor maneuver is not an easy task. The engi-
neer responsible for the design has to make sure that the anchor
does not jam up during the lifting process, and that the position
adopted by the anchor on the hull is acceptable when completely
lifted. Nowadays, the design process is based on wooden scale
models of the hull, anchor and chain links, which are expensive
and time consuming, and do not offer the required precision.For
these reasons, having a computational tool to simulate the multi-
body system would be very helpful for the designers.

In this work the anchor lifting maneuver of a ship is sim-
ulated, taking into account the behavior of the anchor and the
chain. To consider the contact forces between them and the hull
of the ship, a general contact algorithm for rigid bodies anda
particular contact algorithm for the chain links is described.

1 INTRODUCTION

To design the part of the hull of the ship in which the anchor
will be placed when completely lifted, is a geometrical prob-
lem. The correct geometrical design has to guarantee that the
anchor does not jam up during the lifting process and the posi-
tion adopted by the anchor on the hull is acceptable when com-
pletely lifted, independently of initial position and velocity of
the anchor when the lifting maneuver begins. Another condition
to ensure is that the anchor does not keep hitting the hull or it
slips if the sea conditions are not good.

Nowadays, to check all this design conditions the only tools
at the designers disposal, are: a) the engineer’s experience, of

course; b) wooden scale models of the hull, anchor and chain
links, which are expensive, time consuming and, more impor-
tant, they do not offer the required precision. Up to the authors
knowledge it does not exist neither a software nor a complete
simulation of the anchor lifting maneuver of a ship. For these
reasons, having a multibody code to simulate the system would
be very helpful and valuable for the designers.

The dynamics of the system is governed by the large
amount of contacts that take place between its bodies. Because
of this reason, the contact models and contact detection algo-
rithms play a key role in this application. Two aspects must be
taken into consideration to successfully simulate the behavior of
multibody systems with contacting bodies. First, an adequate
contact model must be chosen for the application: it has to be
accurate, stable and robust enough for the applications to tackle.
Second, the geometrical detection of the contact events is nec-
essary to feed the contact model, independently of the contact
model chosen. The treatment of contact is still a challenging
topic in multibody dynamics.

In a broad sense there are two families of methods to solve
the normal contact problem in multibody systems composed of
rigid bodies, see [11, 6]: the discontinuous and the continuous
approaches. The discontinuous approaches are impulsive and
for this reason suited to impact forces, while the continuous ap-
proaches are better suited to applications in which it is expected
to occur permanent contacts or at least contacts of a significant
duration; the normal force model described in this work is con-
tinuous and based on regularized forces. Moreover, it is worth
to mention that friction is a complex nonlinear phenomenon.Up
to these days, there is not a universally accepted model to calcu-
late the friction force between bodies that accurately predicts all
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the experimentally observed behaviors. under dry conditions. In
this work, a tangential friction model developed by the authors
in a previous work is described [5]: the model includes dry fric-
tion, stiction at low velocities and a viscous component.

Independently of the contact model chosen, it is necessary
to detect the contacts to feed the contact model, which turnsto
be a geometrical problem. In many cases it is possible to make
some assumptions, for example when the exact geometry of the
bodies are known, it is possible to simplify the task of detecting
the contacts between bodies by using the analytical equations of
the geometry [12, 1], or by replacing the actual one by surround-
ing primitives like spheres or boxes. Nevertheless, when the ex-
act geometries of the bodies are not known (because they are
read from CAD models) or when the geometries are very com-
plex, more general strategies have to be developed in order to
detect the contacts and carry out all the calculations necessary to
feed the contact model [2, 10]. The algorithms described in this
work fall within both categories: the first algorithm described, is
a general algorithm developed to detect contacts between bodies
with complex 3D geometries given by CAD models in triangu-
lar mesh format; the second algorithm, is a specific algorithm to
detect contact between chain links and complex 3D geometries
given by CAD models in triangular mesh format.

Between the large number of formulations of the equations
of motion existent (see e.g. [8]), the penalty and augmented La-
grangian formulations, [3] [4], are characterized by transform-
ing the constraints into forces proportional to the constraints vi-
olation. This technique, used along this work, is similar and
compatible to that of the continuous force models for normal
contact,which relate the force and deformation of the bodies in
contact to avoid the penetration between them.

2 MULTIBODY FORMULATION

The multibody formulation chosen for this work is an
index-3 Augmented Lagrangian in mixed coordinates (natural
plus relative), with projections of velocities and accelerations
onto the constraints manifolds. The integration scheme adopted
was the the implicit single-step trapezoidal rule. The mentioned
formulation was described in [3].

3 DESCRIPTION OF THE CONTACT MODEL

The contact forces approach proposed for this work com-
prises two different models: the normal force model and the
tangential force model. The two sub-models are presented sepa-
rately in subsequent sections. A more detailed descriptionof the
contact model is given in [5].

For simplicity reasons, the contact model is going to be
explained for the collision of a spherical and a flat body but it is
easily generalized to bodies with arbitrary shapes.

3.1 Normal force model

The normal force model chosen for this work was the Flo-
res model [7]. The model is very similar to the Hunt-Crossley
model described in [5] with a little difference in the dissipation
term, therefore the detailed description given there is valid here
with little changes. The expression for the normal force hasthe
following form.

Fn = knδ
n

(

1 +
8 (1− ǫ)

5ǫ

δ̇

δ̇0

)

n (1)

wherekn is the equivalent stiffness of the contact and depends
on the shape and material properties of the colliding bodies, n
is the Hertz’s exponent,δ = Rsph − |pcenter − pcontact| is the
indentation,δ̇ its temporal derivative,δ̇0 is the relative normal
velocity between the colliding bodies when the contact is de-
tected,ǫ is the coefficient of restitution, andn is the direction of
the force. The subscript “n” comes from “normal”.

The value ofkn depends on the shape and materials of the
colliding bodies.

3.2 Tangential force model

The tangential force model for the friction force was devel-
oped in detail in [5] and it is based on Coulomb’s law including
stiction plus a viscous friction term. The general form of this
force is the following,

Ft = κFstick + (1− κ) Fslide − µviscvt (2)

In the previous expression, the first two terms constitute
the dry friction, while the third term accounts for the viscous
friction. For the smooth transition between sticking and slipping
the dry friction force is divided in two components coupled by
a smooth function, following the ideas proposed in [9]. The
subscript “t” comes from “tangential”.

In (2), µvisc is the viscous damping coefficient,Fstick and
Fslide are the components of the stiction and slipping forces,κ is
a smooth function of the tangential velocity,vt, which is defined
in terms of the central point of the contact region,pcontact, and
the normal vector at the contact,n , as follows.

vt = ṗcontact −
(

nT ṗcontact

)

n (3)

The mentioned function,κ, was taken from [9] and has the
following form.

κ = e−(v
T

t vt)/v2

stick (4)

Equation (2) showed that the total force is composed of
three contributions: the sliding dry friction force at highveloc-
ities, the stiction force at low velocities and the viscous friction
force. The sliding force is given by the classical Coulomb ex-
pression, while the stiction force is considered by means ofvis-
coelastic elements acting between the colliding bodies. Tosee
the detailed expressions of the sliding and stiction forcessee [5].
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Figure 1. Body mesh.

4 CONTACT DETECTION ALGORITHMS I:
GENERAL DETECTION ALGORITHM

The algorithms described in this section perform the detec-
tion of the contacts existing between pairs of bodies with arbi-
trary shapes. Moreover, for each one of the contacts found, they
perform the calculation of the necessary data to feed the contact
model described in section3. The colliding bodies considered
in this section have complex 3D geometries given by CAD mod-
els in triangular mesh format and their geometries are read from
CAD files. Since the geometry is not known in advance, the
detection algorithm has to be completely general. All the exis-
tent CAD packages have translators from the native format to
triangular mesh formats likeobj or stl.

The mathematical representation of the triangular mesh of
the bodyi, with nv vertexes andnf triangular faces, expressed
in the local framework of the body, is the following (see Figure
1).

s̄iv; 1 ≤ v ≤ nv; nv ≥ 3 (list of vertexes) (5)

f if =





f i
f1

f i
f2

f i
f3



 ; 1 ≤ f ≤ nf ; nf ≥ 1 (list of triangles) (6)

Thus, the three vertexes that compose the facef of the body
are obtained by replacing each one of the indexes from (6) in (5):
s̄i
fi
f1

, s̄i
fi
f2

ands̄i
fi
f3

.

The vertexes list of the mesh in global coordinates is ob-
tained by means of the body transformation matrixAi, using
homogeneous coordinates.

s∗iv = Ais̄∗iv ⇒

[

siv
1

]

=

[

Ri si0
0 1

] [

s̄iv
1

]

(7)

It will be necessary, for some of the algorithms of this sec-
tion, to express the vertexes of a body in the local frame of other
body. Thus, the vertexes of bodyi in the local frame of bodyj.

s̄∗i,jv =
(

Aj
)−1

s∗iv =
(

Aj
)−1

Ais̄∗iv = Ai,j s̄∗iv (8)

where,

(

Aj
)−1

=

[

(

Rj
)T

−
(

Rj
)T

s
j
0

0 1

]

(9)

Ai,j =

[

(

Rj
)T

Ri
(

Rj
)T
(

si0 − s
j
0

)

0 1

]

(10)

Replacing equation (10) in equation (8).

s̄i,jv =
(

Rj
)T
(

si0 − s
j
0

)

+
(

Rj
)T

Ris̄iv (11)

4.1 CAD models preprocessing

This task is performed only once at the beginning of the
simulation and carries out the preprocessing of the CAD models,
which includes basically the calculation of the neighbors of each
face and the creation of the data structures to calculate thepairs
of triangles in collision. As was mentioned before, the geometry
of each body, is given by a mesh of triangles.

4.2 Calculation of the collision pairs

For this task the open source library OPCODE (Optimized
Collision Detection) was partially used. The tree structures to
order and subdivide the faces were taken from Opcode, but the
algorithms to detect if two triangles collide were completely re-
programmed, since the original algorithms of Opcode offer in-
accurate (and sometimes completely incorrect) results, not valid
for multibody dynamics. The algorithms described in this sec-
tion, return a list ofnp disordered colliding triangle pairs be-
tween bodiesi and j (see Figure2) and a list ofnp disordered
intersection segments between the pairs, expressed in the local
frame of bodyj.

pairs
ij =

{

f i
k, f

j
k

}

; 0 ≤ k ≤ np (list of pairs) (12)

isects
ij,j

=
{

ik,1ik,2
}

; 0 ≤ k ≤ np (list of segments) (13)

In equations (12) and (13) the super indexij , indicates col-
lision between bodiesi andj, while in equation (13) the over line
along with the superindex,j indicates local coordinates of body
j.
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4.2.1 Box-Box overlap algorithm

The original Opcode algorithm to test AABB (Axis
Aligned Bounding Box) with AABB collisions offered incorrect
results for local aligned or almost local aligned boxes. Thenew
algorithm checks this alignment.

4.2.2 Triangle-Triangle overlap algorithm

The original Opcode algorithm was based on projections
while the new programmed algorithm is based on the direct so-
lution of edge-triangle intersections which is much more robust.
Moreover the new algorithm was programmed in double preci-
sion. The intersection of the triangles is typically a straight line
segment, the new algorithm includes also the calculation ofthe
extreme points of the segment.

In Figure3 the trianglespi (from bodyi) andqj (from body
j), are intersecting. The triangles are composed of the vertexes
f ip andf jq respectively. To check the intersection between them,
it is enough to check each edge of trianglepi againstqj and
vice versa. If the triangles overlap, two edge-triangle intersec-
tions exist. To illustrate the edge-triangle test, the intersection

between edgef j
q1f

j
q2 and trianglepi is calculated here.

Let’s callp0, p1, p2 the vertexes of trianglepi andq0, q1,

q2 the vertexes of triangleqj . Using equation (11), it is possible
to express all the vertexes in the local frame of bodyj.

p0 = s̄
i,j
fi
p1

=
(

Rj
)T
(

si0 − s
j
0

)

+
(

Rj
)T

Ris̄ifi
p1

p1 = s̄
i,j
fi
p2

=
(

Rj
)T
(

si0 − s
j
0

)

+
(

Rj
)T

Ris̄ifi
p2

p2 = s̄
i,j
fi
p3

=
(

Rj
)T
(

si0 − s
j
0

)

+
(

Rj
)T

Ris̄ifi
p3

(14)

q0 = s̄
j

fj
q1

q1 = s̄
j

fj
q2

q2 = s̄
j

fj
q3

(15)

The equations of trianglepi.

rt = p0 + µ1u1 + µ2u2











µ1

l1
+

µ2

l2
≤ 1

µ1 ≥ 0
µ2 ≥ 0











u1 =
p1 − p0

l1
; u2 =

p2 − p0

l2
l1 = |p1 − p0| ; l2 = |p2 − p0|

(16)

The equations of edgef j
q1f

j
q2.

re = q0 + ηv; 0 ≤ η ≤ d

v =
q1 − q0

d
; d = |q1 − q0|

(17)

Makingrt = re.

p0 + µ1u1 + µ2u2 = q0 + ηv ⇒

[−v u1 u2]





η
µ1

µ2



 = [q0 − p0] ⇒

Ax = b

(18)

There are 3 possible situations.

1. rank(A) = 3 = rank([A|b]). The edge intersects the

plane which contains the triangle. In case
µ1

l1
+

µ2

l2
≤ 1

with, µ1, µ2 ≥ 0 and0 ≤ η ≤ d the intersection lays into
the triangle, otherwise the edge is discarded. In case of
intersection, the intersection point can be easily calculated
replacingη in (17).

2. rank(A) = 2 = rank([A|b]). The edge is contained in
the plane. The triangles might be coplanar or adjacent. The
edge is discarded.

3. rank(A) = 2 6= rank([A|b]) = 3. The edge is parallel
to the plane which contains the triangle. The edge is dis-
carded.

The three edges of triangleqj are successively checked
against trianglepi and after, the three edges ofpi against triangle
qj . In case two intersections are obtained, the triangles overlap
and the intersection,i1i2, is given by the segment composed of
the intersection points.
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4.3 Contact regions contour closure algorithm

From the disordered colliding triangles list (12) of section
4.2, this algorithm performs the closure of the contours of the
different contact regions, grouping together the collision pairs
by regions and ordering the collision pairs of each region (and
its contour segments) in a way that permits to follow the con-
tours from a segment to the adjacent one. The algorithm uses
the topological information about the neighbors, calculated in
section4.1, to find out which collision pairs belong to the same
region and to order the segments inside each region.

Once the segments are grouped by regions and the seg-
ments of each region are ordered, the algorithm merges the ad-
jacent segments removing the coincident vertexes in (13), by
means of a simple numerical procedure. Finally, the algorithm
returns a list with the existentnc 3D contours given by their or-
dered vertexes.

cij,jc =
[

rc,1 rc,2 . . . rc,nic

]

;

0 ≤ c ≤ nc (list of contours)
(19)

In (19), nic is the number of vertexes of the contourc, the
super indexij , indicates collision between bodiesi andj, and the
over line along with the superindex,j indicates local coordinates
of bodyj.

4.4 Contact plane calculation algorithm

For each one of the contact regions identified in section4.3,
the algorithm calculates the equations of the contact planethat
better fits the 3D contour, (19), of the region (see Figure4).

Replacing the vertexes of the contour given by (19) in the
equations of the contact plane.









rTc,1 1
rTc,2 1
. . . . . .

rTc,nic
1









[

n

d

]

=









0
0
. . .
0









⇒ Ax = 0 (20)

Wheren is a vector normal to the contact plane andd = −
rTc n beingrc a point that belongs to the contact plane.

In general the system of equations (20) has the only solu-
tionn = 0; d = 0, which obviously is not the desired solution. It

is necessary to impose the condition|n| = 1 to obtain an incom-
patible system of equations that can be solved by least squares.

Writing the least squares system from (20).

(

ATA
)

x = 0 (21)

Factoring the matrix
(

ATA
)

and imposing the value (for
example equal to 1) of the component ofx corresponding to the
minimum pivot of the factorization, the equations of the con-
tact plane are obtained. Finallyx has to be scaled to fulfill the
condition |n| = 1, obtaining the final equations of the contact
plane.

nTr+ d = 0 (22)

Wheren is the unit normal vector to the plane andd is the
distance from the plane to the origin measured along the normal
vector.

All the calculations described in this section were per-
formed with the contour of equation (19) expressed in the local
reference frame of bodyj. The normal vector transformed to
the global reference frame is obtained by means of the rotation
matrix of bodyj.

n = Rjn (23)

4.5 Contact region centroid algorithm

For each one of the contact regions identified in section4.3,
the algorithm described in this section, calculates the centroid of
the projection of the contact region into the contact plane.

The centroid of a general 2D polygon ofN vertexes, con-
tained in theX-Y plane has the following expression.

r△c =
1

6A

N−1
∑

i=0





(xi + xi+1) (xiyi+1 − xi+1yi)
(yi + yi+1) (xiyi+1 − xi+1yi)

0





A =
1

2

N−1
∑

i=0

(xiyi+1 − xi+1yi)

(24)

Nevertheless the contour,c, of equation (19) does not con-
stitute a 2D polygon since its vertexes do not belong, in general,
to the same plane. To assimilate the contour to a 2D polygon,
the vertexes can be projected into the contact plane calculated in
section4.4. Moreover, the resulting 2D polygon has to be con-
tained in theX-Y plane, what can be achieved by means of the
transformation matrixMt, which transforms theX-Y plane into
the contact plane of equation (22).

The mentioned transformation matrix has the following ex-
pression.

Mt =

[

Mr r0
0 1

]

Mr =
[

v0 n ∧ v0 n
]

(25)

5



Wherer0 andv0 are a point and a vector contained in the
contact plane, respectively, that can be chosen like follows.

r0 =





−d/nx

0
0



 ; v0 =





−ny

nx

0



 ; nx = max(nx, ny, nz)

r0 =





0
−d/ny

0



 ; v0 =





ny

−nx

0



 ; ny = max(nx, ny, nz)

r0 =





0
0

−d/nz



 ; v0 =





nz

0
−nx



 ; nz = max(nx, ny, nz)

(26)
Beingnx, ny, nz the components ofn. Expressing the con-

tour in the local frame of the plane.

cij,△c = MT
r

(

cij,jc −
[

r0 r0 . . . r0
])

(27)

Replacing thex andy components of (27) in (24), the cen-
troid r△c , in local coordinates of the plane, is obtained.

Finally, the centroid expressed in global coordinates has the
following expression.

rijc = s
j
0 +Rj

(

r0 +Mrr
△

c

)

(28)

4.6 Maximum indentation calculation algorithm

For each one of the contact regions identified in section
4.3, the algorithm calculates the maximum indentation (or inter-
penetration),δ. This algorithm travels along the colliding trian-
gles (equation (12)) and their neighbors looking for the maxi-
mum indentation. In order to distinguish the faces of the first
body that are inter-penetrating the second, it is necessaryto
check, for each neighbor not belonging to the colliding triangles
list, two conditions: 1) the distance of each vertex of the triangle
to the contact plane, calculated in section4.4, is negative and
2) the projection each one of the vertex of the triangle into the
contact plane lies inside the projected contact region contour of
section4.3 (see Figure4). Between the lists of colliding and
internal triangles of each body, the algorithm looks for themax-
imum indentation.

The checking of the condition 1) is straightforward while
the condition 2) is checked by means of a ray casting algorithm:
the number of intersections of a ray departing from a point isan
even number if the point is outside the polygon, and it is odd if
the point is inside the polygon.

5 CONTACT DETECTION ALGORITHMS II:
CHAIN-HULL DETECTION ALGORITHM

The algorithms described in this section perform the detec-
tion of the contacts existing between pairs of bodies when one
of them is a chain link and the other one has an arbitrary shape.
Moreover, for each one of the contacts found, they perform the

�

�������	��
�

��
��
�	�

�

�

�

�

�

�

�

�

�




Figure 5. Chain link: approximative geometries.

calculation of the necessary data to feed the contact model de-
scribed in section3. Here the geometry of the link is known and
the geometry of the arbitrary body is given in triangular mesh
format and read from a CAD file like in section4.

The geometry of each link is composed of primitives: two
finite cylinders (quadric surfaces limited by two planes) and two
semi-toroids (superquadric surfaces limited by one plane), as
shown in Figure5. The algorithms take advantage of the analyt-
ical expressions to make the detection faster and more precise.

The bodies with arbitrary geometries are preprocessed like
in section4.1 and the calculation of the collision pairs is quite
similar to4.2with the different that the triangle-triangle overlap
algorithm of4.2.2has to be replaced by a link-triangle overlap
algorithm that will be described next. As before, to avoid unnec-
essary calculations, each link and each primitive inside the link
have a box surrounding them.

5.1 Link-Triangle overlap and maximum indentation
algorithms

As indicated in Figure5, the geometry of the link is divided
into four primitives: two cylinders (primitives 1 and 2) andtwo
torus (primitives 3 and 4) limited by planes. The stud in the
center of the link, if exists, it is not considered for overlap cal-
culations. The algorithm calculates if the triangle overlaps each
one of the primitives, therefore is divided in two differentover-
lap tests: cylinder-triangle overlap algorithm and torus-triangle
overlap algorithm.

The way to calculate if a triangle intersects a primitive is
done calculating the minimum distance between them. If the
distance is negative, the triangle intersects the primitive with an
indentation equal to the minimum distance.

5.1.1 Cylinder-Triangle overlap algorithm

Let’s suppose the overlap test for the trianglepi, given by
equations (16) and one of the cylinders (primitives 1 and 2). The
coordinates of the triangle are transformed to the local frame of
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the cylinder using (14).
The minimum distance between the triangle and the cylin-

der is given by the following constrained optimization problem
with inequality constraints.

min. r2p = p2x + (py ∓R)
2 (29)

st.

φ1 = 1−
µ1

l1
−

µ2

l2
≥ 0 (30)

φ2 = h− pz ≥ 0 (31)

φ3 = h+ pz ≥ 0 (32)

φ4 = µ1 ≥ 0 (33)

φ5 = µ2 ≥ 0 (34)

From (16)

px = p0x + µ1ux + µ2vx (35)

py = p0y + µ1uy + µ2vy (36)

pz = p0z + µ1uz + µ2vz (37)

Equation (29) is the distance between a point of the plane
and the cylinder generatrix, in (29) the ”−” sign is for the prim-
itive 1 and the ”+” sign for the primitive2; equations (31) and
(32) are the boundaries of the cylinder while (30) (33) and (34)
are the boundaries of the triangle. Note that the unknowns ofthe

problem areµ =

[

µ1

µ2

]

.

The Lagrangian of this problem is like follows.

L (µ,λ) = r2p−λ1φ1−λ2φ2−λ3φ3−λ4φ4−λ5φ5 = r2p−φTλ

(38)
The Karush-Kuhn-Tucker conditions provide the necessary

conditions for the optimum.

∇µL (µ,λ) = 0 (39)

∇λL (µ,λ) ≥ 0 (40)

λi ≥ 0; i = 1, ..., 5 (41)

λiφi = 0; i = 1, ..., 5 (42)

The previous conditions are not easy to manage directly
but they allow to transform the problem to several problems
with equality constraints, instead of the inequality ones.Equa-
tions (42) say that the slack constraints have null multipliers and
therefore they may be removed, solving only for the active con-
straints. After solving is necessary to check the conditions (40)
and (41) to discover if it is necessary to activate or deactivate
new constraints.

Since (29) is a quadratic function of the variables and the
constraints are linear, the problem can be stated as a quadratic
programming problem.

min.
1

2
µTGµ+ µTd

st. A∗µ = b∗

}

⇒

[

G −A∗T

A∗ 0

] [

µ

λ∗

]

=

[

−d

b∗

]

(43)

Where.

G =

[

2
(

u2
x + u2

y

)

2 (uxvx + uyvy)
2 (uxvx + uyvy) 2

(

v2x + v2y
)

]

(44)

d =

[

2p0xux + 2 (p0y ∓R)uy

2p0xvx + 2 (p0y ∓R) vy

]

(45)

A =















−
1

l1
−

1

l2
−uz −vz
uz vz
1 0
0 1















; b =













−1
−h+ p0z
−h− p0z

0
0













(46)

Note thatA andb are the complete sets of constraints,
while A∗ andb∗ are only the active sets. It was said before
that after solving each problem with the current active set,it
is necessary to check the validity of the set, adding or remov-
ing constraints if necessary. For this purpose active-set methods
were employed (see, for example [13]).

The solution to the problem is the vectorµ, which deter-
mines the point inside the triangle at the minimum distance to
the cylinder. The distance is calculated like follows.

δ = rp −
d

2
(47)

5.1.2 Toroid-Triangle overlap algorithm

Let’s suppose the overlap test for the same trianglepi, of
section5.1.1, and one of the semi-toroids (primitives 3 and 4) of
Figure5. The minimum distance between the triangle and the
semi-toroid is given by the following constrained optimization
problem with inequality constraints.

min. r2p = p2x +

(

√

p2y + (pz ∓ h)
2
−R

)2

(48)

st.

φ1 = 1−
µ1

l1
−

µ2

l2
≥ 0 (49)

φ2 = ± (pz ∓ h) ≥ 0 (50)

φ4 = µ1 ≥ 0 (51)

φ5 = µ2 ≥ 0 (52)

Equation (48) is the distance between a point of the triangle
and the toroid generatrix, equation (31) is the boundary of the
semi-toroid while (30) (33) and (34) are the boundaries of the

triangle. The unknowns of the problem are againµ =

[

µ1

µ2

]

.

In equations (48) and (50), when± or ∓ appear, the upper sign
is for the upper semi-toroid (primitive3) and the lower sign for
the lower semi-toroid (primitive4).

The problem here is very similar to the cylinder overlap,
with the difference that the objective function is not quadratic
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anymore. The technique is the same, to transform the inequal-
ity constraints to equality constraints and to use the active set
method (see [13]).

∇µL (µ,λ) = ∇µ

(

r2p
)

− φT
µλ = 0 (53)

φ∗ = 0 (54)

The problem can be solved using the Augmented La-
grangian technique.

∇µ

(

r2p
)

− φT
µ ( λ− αφ) = 0 (55)

Since∇µ

(

r2p
)

is non-linear, equation (55) can be solved
by means of the Newton-Raphson iteration.

[

∇µµ

(

r2p
)

+ φT
µαφµ

]

j
∆µj+1 = −

[

∇µ

(

r2p
)

− φT
µ ( λi − αφ)

]

j

(56)
The system has to be solved iteratively keeping constant

the values ofλi until convergence. Once the convergence is
attained, the outer iteration for the multipliers is performed.

λi+1 = λi − αφ (57)

Taking derivatives to the equations of the objective function
and constraints.

∇µ

(

r2p
)

=

[

∂r2p
∂p

∂p

∂µ

]T

=

[

ux uy uz

vx vy vz

]





2px
2k1py

2k1 (pz − h)



 =
∂p

∂µ

T ∂r2p
∂p

T

(58)

k1 = 1−
R

√

p2y + (pz ∓ h)
(59)

∇µµ

(

r2p
)

=

[

∂2r2p
∂p∂µ

∂p

∂µ
+

∂r2p
∂p �

�
�∂2p

∂µ2

]T

=

[

∂p

∂µ

T ∂2r2p
∂p∂µ1

T
∂p

∂µ

T ∂2r2p
∂p∂µ2

T
]

(60)

∂2r2p
∂p∂µ1

T

=

2













ux

R

(

pyuy + (pz ∓ h)uz

k32

)

py + k1uy

R

(

pyuy + (pz ∓ h)uz

k32

)

(pz ∓ h) + k1uz













(61)

Figure 6. Anchor with chain

∂2r2p
∂p∂µ2

T

=

2













vx

R

(

pyvy + (pz ∓ h)vz
k32

)

py + k1vy

R

(

pyvy + (pz ∓ h)vz
k32

)

(pz ∓ h) + k1vz













(62)

k2 =
√

p2y + (pz ∓ h) (63)

φµ =











−1

l1

−1

l2
uz vz
1 0
0 1











(64)

Note thatφ andφµ are the complete sets of constraints and
jacobian matrix, whileφ∗ andφ∗

µ are only the active sets.
The solution to the problem is the vectorµ, which deter-

mines the point inside the triangle at the minimum distance to
the semi-toroid. The distance is calculated using (47).

6 NUMERICAL SIMULATION: ANCHOR MA-
NEUVER OF A WARSHIP

The system is shown in Figure6, it is composed of the chain
and the anchor. The chain has a large number of links of differ-
ent types, parametrized in terms of the diameterd; the anchor is
composed of two bodies linked with a revolute joint. The con-
tacts between the different links of the chain is consideredby
means of universal joints with friction. The hull of the warship
is static. The system is subjected to the tension force on the
chain, the gravity forces, the constraint forces and the contact
forces with the hull of the warship. The contacts between an-
chor and hull use the general algorithms described in section 4,
while the contacts between links and hull use the specific algo-
rithms of section5, except by some kind of special links with
shapes that cannot be approximated by cylindrical and toroidal
surfaces and use the general algorithm also.

A graphical user interface was designed to control the sim-
ulation. The user can select parameters like: total simulation
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Figure 7. Simulation of the maneuver of a ship.

time, CAD models for hull and anchor, number and type of links,
maximum tension force in the chain, etc.

The results of the simulations are shown in Figure7.

7 Conclusions

All the algorithms necessary to simulate the anchor maneu-
ver of a ship were developed. The description of the algorithm
includes: a contact force model composed of normal and tangen-
tial forces; a general contact detection algorithm for bodies with
complex non-conforming 3D geometries given by CAD models
in triangular mesh format and a specific contact algorithms for
the chain links. Furthermore, the performance of the described
algorithms was tested with that realistic simulation.
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