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ABSTRACT
The importance of the sensitivity analysis of multibody sys-

tems for several applications is well known, concretely design
optimization based on the dynamics of multibody systems usu-
ally requires the sensitivity analysis of the equations of motion.
A broad range of methods for the dynamics of multibody systems
include the state space formulations based on Maggis equations,
nullspace methods or coordinate partitioning. Dynamic sensitiv-
ities, when needed, are often calculated by means of finite differ-
ences but, depending of the number of parameters involved, this
procedure can be very demanding in terms of CPU time and the
accuracy obtained can be very poor in many cases. In this paper,
several ways to perform the sensitivity analysis are explored and
analytical expressions for the direct and adjoint sensitivity anal-
ysis of multibody systems are presented, all of them based on
Maggi’s formulations. Moreover, two different approaches to the
adjoint sensitivity analysis of multibody systems are presented.

Although particularized to one formulation, the general ex-
pressions provided in the paper, are intended to be easily gener-
alized and applied to any other formulation that can be expressed
as an ODE-like system of equations, including penalty formula-
tions.

∗Address all correspondence to this author.

Besides, to check the validity and correctness of the pro-
posed equations, the solutions of all the methods proposed are
compared: 1) between them, 2) with the third party code FA-
TODE and 3) with the numerical solution using real and complex
perturbations.

Finally, all the techniques proposed are applied to the dy-
namical optimization of a multibody system.

INTRODUCTION
Multibody dynamics has become an essential tool for me-

chanical systems analysis and design. The evolution during the
last decades makes possible not only to think about the analysis
of mechanical systems, but also to develop tools that can help to
improve the design of them. Thus, one interesting application of
the state-of-the-art multibody models, is the optimal design for
which sensitivity analysis is essential.

In general, the multibody dynamics equations, constitute an
index-3 differential algebraic system of equations (DAE) that it
is not is usually directly solved because of the numerical diffi-
culties involved [1, 2]. Some of the most advanced families of
formulations used nowadays are based on some ideas presented
in the eighties and nineties. One of this families comprise state
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space formulations based on Maggis equations, nullspace meth-
ods or coordinate partitioning introduced in [3–5].

A lot of attention is being paid recently to the sensitivity
analysis of multibody systems, for different applications. There
are two different approaches to obtain the sensitivity equations
of dynamical systems: the direct sensitivity approach and the
adjoint sensitivity approach [6–8]. Different approaches were
developed for different formulations of the equations of motion
[9–13]. In this paper the two approaches are developed for one
state space formulation based on the projection Matrix R [5] or
Maggi’s equations and the results are applied to the optimization
of multibody systems.

To validate the expressions proposed for the sensitivities is
essential, since small changes or omissions in the derivatives can
lead to completely different results for the sensitivities obtained.
For this reason, the validity of the theoretical results introduced
in the paper to calculate the sensitivities is checked comparing
the direct and the adjoint approaches, comparing with numerical
results and comparing with the third party library for the sensi-
tivity analysis of ODE systems, FATODE [14].

DESCRIPTION OF THE MULTIBODY FORMULATION
The formulation used here was described in [5] with the

name of projection matrix R formulation.
The starting point for the formulation is the virtual power

principle in dependent coordinates.

δq∗T (Mq̈−Q) = 0 (1)

Where δq∗ constitutes a set of n dependent virtual displace-
ments and the rest of the terms are the same as described before.

In addition to the equation (1), the actual positions, veloc-
ities and accelerations, and the virtual displacements, have to
fulfill the constraint equations and their derivatives, that is the
following kinematic relations.

ΦΦΦ = 0 (2)
ΦΦΦqq̇ =−ΦΦΦt = b (3)

ΦΦΦqq̈ =−Φ̇ΦΦqq̇− Φ̇ΦΦt = c (4)
ΦΦΦqδq∗ = 0 (5)

Where, again, ΦΦΦ is the constraints vector, ΦΦΦq =
∂ΦΦΦ

∂q
is the

Jacobian matrix of the constraints vector and ΦΦΦt =
∂ΦΦΦ

∂ t
.

Let R ∈Rnx(n−m) be a matrix of size nx(n−m) being n the
number of variables and m the number of independent constraints
of the system, including the reonomous ones, and let S∈Rnxm be

another matrix of size nxm. It is possible to write the dependent
velocities and accelerations of the system in terms of the selected
degrees of freedom by means of this matrices, without worrying
about how to calculate them yet.

q̇ = Rż+Sb (6)
q̈ = Rz̈+Sc (7)

In a similar way the virtual dependent displacements can be
expressed in function of the virtual degrees of freedom, or inde-
pendent virtual displacements.

δq∗ = Rδz∗ (8)

Using (7) and (8) in (1), and taking into account that the
virtual velocities z are independent.

(
RTMR

)
z̈ = RT (Q−MSc) (9)

Or more compactly:

M̄(z) z̈ = Q̄(t,z, ż) (10)

M̄(z) = RTMR (11)

Q̄(t,z, ż) = RT (Q−MSc) (12)

Equations (10)-(12) constitute a second order state-space
ODE.

One might be wondering now, how to calculate the matrices
R and S. There are different ways to calculate them. One possi-
bility is to write the following kinematic systems of equations.

[
ΦΦΦq
B

]
q̇ =

[
b
ż

]
(13)[

ΦΦΦq
B

]
q̈ =

[
c
z̈

]
(14)

Where B is a very simple matrix composed of zeros and
ones, thus choosing the degrees of freedom z as a subset of the
dependent coordinates q. From (13) and (14), it can be followed
that.

q̇ =

[
ΦΦΦq
B

]−1 [b
ż

]
= Rż+Sb (15)

q̈ =

[
ΦΦΦq
B

]−1 [ c
z̈

]
= Rz̈+Sc (16)
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So the matrices R and S are not but the columns of the in-
verse of the leading matrix in (13) or (14), and the equations (15)
and (16) are not but the relations (6) and (7) introduced before
without explaining how to obtain them. Nevertheless the explicit
calculation of the matrix S is rarely needed, so from the compu-
tational point of view, the calculation of the inverse in (15) and
(16) can be avoided most of times. Nevertheless, in this case as
will be shown next the matrix S will play an important role on
the sensitivities calculation.

As indicated before, instead of the inverse, most of times the
columns of the matrix R, the terms Sb, Sc and the columns of
the matrix Ṙ are obtained by means of appropriate velocity and
acceleration analysis.

R j︸︷︷︸
nx1

= q̇|
ΦΦΦt=0,ż j=1,żi=0(i6= j) =

[
ΦΦΦq
B

]−1 [0
ż

]
ż j=1,żi=0(i6= j)

(17)

Sb = q̇|ż=0 =

[
ΦΦΦq
B

]−1 [b
0

]
(18)

Sc = q̈|z̈=0 =

[
ΦΦΦq
B

]−1 [ c
0

]
(19)

Ṙ j︸︷︷︸
nx1

= q̈|
ΦΦΦt=0,Φ̇ΦΦt=0,z̈=0,ż j=1,żi=0(i6= j) =

[
ΦΦΦq
B

]−1 [−Φ̇ΦΦqq̇
0

]
ΦΦΦt=0,q̇=R j

(20)

In practice, the velocity and acceleration analyses of equa-
tions (17), (19) and (20) can be implemented in a more efficient
way than the inversion of the matrix proposed. A better op-
tion is a common velocity (or acceleration) analysis removing
the columns of the Jacobian matrix corresponding to the degrees
of freedom, or solving by least squares in case that redundant
constraints are present. Moreover, the Jacobian matrix is always
factorized from previous steps evaluating the kinematics of the
system and only a forward and back substitution is needed for
each analysis.

Finally, let’s suppose that the multibody system is described
by the equations of motion (10) and dependent on some design
parameters ρρρ ∈ Rp (typically masses, lengths, or other parame-
ters related to forces chosen by the engineer). Then the equations
of motion (10) become.

M̄(z,ρρρ) z̈ = Q̄(t,z, ż,ρρρ) (21)

Note that the mass matrix and generalized forces vector in
(21) are now dependent of a parameter set ρρρ that contains the de-
sign variables of the system and therefore z= z(t,ρρρ), ż= ż(t,ρρρ),
z̈ = z̈(t,ρρρ), being t the time variable.

DIRECT SENSITIVITY ANALYSIS
The direct sensitivity approach involves obtaining the sen-

sitivity of a cost function defined in terms of some states and
design parameters of the system. The objective functions con-
sidered here will have the following form.

ψ =
∫ tF

t0
g(q, q̇,ρρρ)dt (22)

Note that the cost function (22) is supposed to depend ex-
plicitly on the dependent states q and their derivatives, instead of
depending on the independent ones z and their derivatives.

The gradient of the cost function (22) can be obtained by the
following expression.

∇ρρρ ψ
T =

dψ

dρρρ
=
∫ tF

t0

((
∂g
∂q

∂q
∂z

+
∂g
∂ q̇

∂ q̇
∂z

)
∂z
∂ρρρ

+

∂g
∂ q̇

∂ q̇
∂ ż

∂ ż
∂ρρρ

+
∂g
∂ρρρ

)
dt

(23)

Using the common notation of a sub-index to express partial
derivatives and commuting the temporal and parameter deriva-
tives:

∂z
∂ρρρ

= zρρρ (24)

∂ ż
∂ρρρ

=
d
dt

∂z
∂ρρρ

= żρρρ (25)

From (8) and (6) the following expressions can be derived:

∂q
∂z

=
∂ q̇
∂ ż

= R (26)

∂ q̇
∂z

=
∂R
∂z

ż+
∂Sb
∂z

(27)

For (27):

∂R
∂z

ż =
[

∂R
∂ z1

ż . . .
∂R
∂ zi

ż . . .
∂R

∂ zn−m
ż
]

(28)

∂R
∂ zi︸︷︷︸

nx(n−m)

=
n

∑
j=1

∂R
∂q j

∂q j

∂ zi
=

n

∑
j=1

∂R
∂q j

R ji =−S
n

∑
j=1

(
∂ΦΦΦq

∂q j
R ji

)
R

(29)

∂Sb
∂z

=
∂Sb
∂q

∂q
∂z

= S
(
−ΦΦΦqqSb+

∂b
∂q

)
R (30)

ΦΦΦqqSb =

[
∂ΦΦΦq

∂q1
Sb . . .

∂ΦΦΦq

∂qi
Sb . . .

∂ΦΦΦq

∂qn
Sb
]

(31)
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In equations (29) and (30) the following result derived from
equations (17) and (18) respectively, was used.

∂R
∂q j︸︷︷︸

nx(n−m)

=

[
ΦΦΦq
B

]−1
−∂ΦΦΦq

∂q j
R

0

=−S
∂ΦΦΦq

∂q j
R (32)

∂Sb
∂q j

=

[
ΦΦΦq
B

]−1
−∂ΦΦΦq

∂q j
Sb+

∂b
∂q j

0

= S
(
−

∂ΦΦΦq

∂q j
Sb+

∂b
∂q j

)
(33)

Then equation (23) becomes:

∇ρρρ ψ
T =

dψ

dρρρ
=
∫ tF

t0

((
∂g
∂q

R+
∂g
∂ q̇

(
∂R
∂z

ż+
∂Sb
∂z

))
zρρρ+

∂g
∂ q̇

Rżρρρ +
∂g
∂ρρρ

)
dt

(34)

Where the derivatives of function g are known, since the ob-
jective function has a known expression and the derivatives zρρρ

and żρρρ are the sensitivities of the solution of the dynamical equa-
tions (21), that need to be obtained differentiating them like fol-
lows.

dM̄
dρρρ

z̈+M̄
∂ z̈
∂ρρρ

=
dQ̄
dρρρ

(35)

Expanding the total derivatives.

∂M̄
∂ρρρ

z̈+
∂M̄
∂z

z̈
∂z
∂ρρρ

+M̄
∂ z̈
∂ρρρ

=
∂ Q̄
∂z

∂z
∂ρρρ

+
∂ Q̄
∂ ż

∂ ż
∂ρρρ

+
∂ Q̄
∂ρρρ

(36)

Finally, defining ()
ρρρ
=

∂ ()

∂ρρρ
, ()q =

∂ ()

∂q
and grouping terms,

the following ODE, called Tangent Linear Model (TLM) is ob-
tained:

M̄z̈ρρρ + C̄żρρρ +
(
K̄+M̄zz̈

)
zρρρ = Q̄ρρρ −M̄ρρρ z̈ (37)

zρρρ (t0) = zρρρ0 (38)
żρρρ (t0) = żρρρ0 (39)

In (37), K̄, C̄ and Q̄ρρρ are given by expressions (40), (41) and
(42) and the terms M̄zz̈ and M̄ρρρ z̈ are derivatives of matrices times
vectors, which are matrices obtained by means of expressions

(43) and (44). Since the initial conditions (38) and (39) are initial
sensitivities of the degrees of freedom of the system, its value can
to be decided based on the physical interpretation of them.

K̄ =−∂ Q̄
∂z

=−
(

∂ Q̄
∂q

∂q
∂z

+
∂ Q̄
∂ q̇

∂ q̇
∂z

)
=

−
(

∂ Q̄
∂q

R+
∂ Q̄
∂ q̇

(
∂R
∂z

ż+
∂Sb
∂z

)) (40)

C̄ =−∂ Q̄
∂ ż

=−∂ Q̄
∂ q̇

∂ q̇
∂ ż

=−∂ Q̄
∂ q̇

R (41)

Q̄ρρρ =
∂ Q̄
∂ρρρ

= RT (Qρρρ −Mρρρ Sc
)

(42)

M̄zz̈ =
∂M̄
∂z

z̈ =
∂RT

∂z
MRz̈+RTMzRz̈+RTM

∂R
∂z

z̈ (43)

M̄ρρρ z̈ =
∂M̄
∂ρρρ

z̈ = RTMρρρ Rz̈ (44)

The derivatives
∂ Q̄
∂q

and
∂ Q̄
∂ q̇

of equations (40) and (41) are

calculated as follows.

∂ Q̄
∂q

=
∂RT

∂q
(Q−MSc)+RT ∂ (Q−MSc)

∂q
=

∂RT

∂q
(Q−MSc)−RT

(
K+MqSc+M

∂Sc
∂q

) (45)

∂ Q̄
∂ q̇

= RT ∂ (Q−MSc)
∂ q̇

=−RT
(

C+M
∂Sc
∂ q̇

)
(46)

Where K =−∂Q
∂q

, C =−∂Q
∂ q̇

and the terms of
∂RT

∂q
are the

transpose of (32) and the following relations hold.

MqSc =
[

∂M
∂q1

Sc . . .
∂M
∂qi

Sc . . .
∂M
∂qn

Sc
]

(47)

∂Sc
∂q

= S
(
−ΦΦΦqqSc+

∂c
∂q

)
(48)

∂Sc
∂ q̇

= S
∂c
∂ q̇

(49)

∂c
∂q

=−Φ̇ΦΦqq̇q̇− Φ̇ΦΦtq (50)

∂c
∂ q̇

=−ΦΦΦqqq̇− Φ̇ΦΦq− Φ̇ΦΦtq̇ (51)
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In equations (48) and (51), the terms ΦΦΦqqSc and ΦΦΦqqq̇ need
to be calculated in the same way as ΦΦΦqqSb in (31), only replac-
ing the vector Sb by Sc and q̇ respectively. In equation (50) the
following expression has to be used.

Φ̇ΦΦqq̇q̇ =

[
∂ Φ̇ΦΦq

∂ q̇1
q̇ . . .

∂ Φ̇ΦΦq

∂ q̇i
q̇ . . .

∂ Φ̇ΦΦq

∂ q̇n
q̇
]

(52)

Finally, for equations (43) and (44):

MzRz̈ =
[

∂M
∂ z1

Rz̈ . . .
∂M
∂ zi

Rz̈ . . .
∂M

∂ zn−m
Rz̈
]

(53)

∂M
∂ zi︸︷︷︸
nxn

=
n

∑
j=1

∂M
∂q j

∂q j

∂ zi
=

n

∑
j=1

∂M
∂q j

R ji (54)

Mρρρ Rz̈ =
[

∂M
∂ρ1

Rz̈ . . .
∂M
∂ρi

Rz̈ . . .
∂M
∂ρp

Rz̈
]

(55)

ADJOINT SENSITIVITY ANALYSIS
Two approaches to the problem have been developed, de-

pending on how the equations of motion are considered:

1. First approach: equations of motion are written as a first
order explicit ODE system.

2. Second approach: equations of motion are written as a first
order semi-explicit ODE system.

Equations of motion written as a first order explicit
ODE system

The system (21) can be transformed into a first order semi-
explicit one, by simply defining a new set of variables by the
relation ż = v,

[
I 0
0 M̄

][
ż
v̇

]
=

[
v
Q̄

]
(56)

M̂(y,ρρρ) ẏ = Q̂(t,y,ρρρ) (57)

In (57) the new vector y =
[

zT vT
]T was defined in order to

lead the system from second to first order. Taking the inverse of
the leading matrix in (57) the system can be expressed as a first
order explicit one.

ẏ = M̂−1 (y,ρρρ)Q̂(t,y,ρρρ) = f(t,y,ρρρ) (58)

The cost function (22) becomes in terms of the new states:

ψ =
∫ tF

t0
g(y,ρρρ)dt (59)

Following the work of [8], let’s consider the following La-
grangian, given by the cost function subjected to the equations of
motion.

L(ρρρ) =
∫ tF

t0
g(y,ρρρ)dt−

∫ tF

t0
µµµ

T (ẏ− f(t,y,ρρρ))dt (60)

Where µµµ is the vector of Lagrange multipliers. Applying
variational calculus.

δL =
∫ tF

t0

(
∂g
∂y

δy+
∂g
∂ρρρ

δρρρ

)
dt

−
∫ tF

t0
δ µµµ

T (ẏ− f(t,y,ρρρ))dt

−
∫ tF

t0
µµµ

T
(

δ ẏ− ∂ f
∂y

δy− ∂ f
∂ρρρ

δρρρ

)
dt

(61)

The parenthesis in the central term are the equations of mo-
tion, therefore if they are fulfilled in each time step, the term
vanishes. For the last term, integration by parts can be applied.

∫ tF

t0
µµµ

T
δ ẏdt = µµµ

T
δy
∣∣tF
t0
−
∫ tF

t0
µ̇µµ

T
δydt (62)

Therefore.

δL =
∫ tF

t0

(
∂g
∂y

+µµµ
T ∂ f

∂y
+ µ̇µµ

T
)

δydt

+
∫ tF

t0

(
∂g
∂ρρρ

+µµµ
T ∂ f

∂ρρρ

)
δρρρdt−

µµµ
T (tF)δy(tF)+µµµ

T (t0)δy(t0)

(63)

In equation (63), δy(t0) in last term is known and the pre-
vious term can be cancelled choosing µµµ (tF) = 000. Moreover, to
avoid calculating δy, the first integral can be canceled by choos-
ing µµµ to be the solution of following adjoint ODE system.

µ̇µµ =− ∂ f
∂y

T

µµµ− ∂g
∂y

T

(64)

µµµ (tF) = 0 (65)
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Therefore, from equation (63) the gradient of the cost func-
tion with respect to parameters can be obtained as

∇ρρρ ψ =
∂ψ

∂ρρρ

T

=
∂y0
∂ρρρ

T

µµµ (t0)+
∫ tF

t0

(
∂ f
∂ρρρ

T

µµµ +
∂g
∂ρρρ

T
)

dt (66)

In the previous result the identity δψ = δL was used, which
holds if the equations of motion are satisfied, as can be derived
from (60).

In (66) and (64) the derivatives of function g are known,
since the objective function has a known expression. To obtain
the derivatives of f, expression (57) can be used.

M̂
∂ f
∂y

+
∂M̂
∂y

f =
∂ Q̂
∂y
⇒ ∂ f

∂y
= M̂−1

(
∂ Q̂
∂y
− ∂M̂

∂y
f

)
(67)

M̂
∂ f
∂ρρρ

+
∂M̂
∂ρρρ

f =
∂ Q̂
∂ρρρ
⇒ ∂ f

∂ρρρ
= M̂−1

(
∂ Q̂
∂ρρρ
− ∂M̂

∂ρρρ
f

)
(68)

The derivatives
∂ f
∂y

and
∂ f
∂ρρρ

can be calculated by blocks.

∂ f
∂y

=

[
I 0
0 M̄−1

][ 0 I
−K̄ −C̄

]
−

 0 0
∂M̄
∂z

v̇ 0

=

[
0 I

−M̄−1
(
K̄+M̄zv̇

)
−M̄−1C̄

] (69)

∂ f
∂ρρρ

=

 0

M̄−1
(

∂ Q̄
∂ρρρ

+
∂M̄
∂ρρρ

v̇
)=

[
0

M̄−1
(
Q̄ρρρ +M̄ρρρ v̇

) ](70)

Taking into account the identity v= ż in (69), the terms K̄, C̄
and M̄zv̇ are given by equations (40), (41) and (43) respectively.
Identically in (70) the terms Q̄ρρρ and M̄ρρρ v̇ are given by (42) and
(44) respectively.

Equations of motion written as a first order semi-
explicit ODE system

Another way to write the adjoint ODE system (64) and the
gradient of the cost function (66) can be obtained using the equa-
tions of motion (57) instead of writing the Lagrangian in terms

of the equations of motion (58). Then the new Lagrangian is like
follows.

L(ρρρ) =
∫ tF

t0
g(y,ρρρ)dt−

∫ tF

t0
µµµ

T (M̂(y,ρρρ) ẏ− Q̂(t,y,ρρρ)
)

dt

(71)
Applying variational calculus.

δL =
∫ tF

t0

(
∂g
∂y

δy+
∂g
∂ρρρ

δρρρ

)
dt−∫ tF

t0
δ µµµ

T (M̂(y,ρρρ) ẏ− Q̂(t,y,ρρρ)
)

dt−

∫ tF

t0
µµµ

T

(
M̂δ ẏ+

∂M̂
∂y

ẏδy+
∂M̂
∂ρρρ

ẏδρρρ− ∂ Q̂
∂y

δy− ∂ Q̂
∂ρρρ

δρρρ

)
dt

(72)

Again the central term vanishes if the equations of motion
are fulfilled at every instant. For the last term, integration by
parts can be applied.

∫ tF

t0
µµµ

TM̂δ ẏdt = µµµ
TM̂δy

∣∣tF
t0
−
∫ tF

t0

(
µ̇µµ

TM̂+µµµ
T ˙̂M
)

δydt (73)

Therefore,

δL =
∫ tF

t0

(
∂g
∂y
−µµµ

T

(
∂M̂
∂y

ẏ− ∂ Q̂
∂y
− ˙̂M

)
+ µ̇µµ

TM̂

)
δydt+

∫ tF

t0

(
∂g
∂ρρρ
−µµµ

T

(
∂M̂
∂ρρρ

ẏ− ∂ Q̂
∂ρρρ

))
δρρρdt− µµµ

TM̂δy
∣∣tF
t0

(74)

Again, the first integral and the last term at the final time can
be canceled if µµµ fulfills the following adjoint ODE.

M̂T
µ̇µµ =

(
∂M̂
∂y

ẏ− ∂ Q̂
∂y
− ˙̂M

)T

µµµ− ∂g
∂y

T

(75)

µµµ (tF) = 0 (76)

where
∂g
∂y

is known and

∂M̂
∂y

ẏ =

[
0 0

M̄zv̇ 0

]
=

[
0 0

M̄zz̈ 0

]
(77)
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∂ Q̂
∂y

=

[
0 I
−K̄ −C̄

]
(78)

Taking into account that M̄ = M̄(z,ρρρ) and the parameters
do not vary with time,

˙̂M =

[
0 0
0 ˙̄M

]
(79)

˙̄M = ∑
i

∂M̄
∂ zi

żi (80)

From equation (74), after removing the terms made zero in
(75) and (76), the gradient of the cost function with respect to
parameters can be obtained as

∇ρρρ ψ =
∂y0
∂ρρρ

T

M̂T (t0)µµµ (t0)+

∫ tF

t0

(∂ Q̂
∂ρρρ
− ∂M̂

∂ρρρ
ẏ

)T

µµµ +
∂g
∂ρρρ

T
dt

(81)

Where.

∂ Q̂
∂ρρρ

=

[
0

Q̄ρρρ

]
(82)

∂M̂
∂ρρρ

ẏ =

[
0

M̄ρρρ v̇

]
(83)

being Q̄ρρρ and M̄ρρρ v̇ given by (42) and (44) respectively.

VALIDATION OF THE COMPUTED SENSITIVITIES
Several approaches were used to make sure that the formula-

tions proposed compute the sensitivities correctly and that all the
derivatives proposed are correct. It is important to remark, that
any mistake, even small, in the derivatives involved in the direct
or adjoint approaches can lead to completely different results in
the sensitivities computed.

The validation proposed and implemented here included
several strategies:

1. Compare the results of direct and adjoint sensitivity ap-
proaches. They should be equal within the truncation error.

2. Compare the results of different formulations of the equa-
tions of motion. They should be almost equal if the formu-
lations represent accurately the motion behavior. The alter-
native formulation of the equations of motion, employed in
this work to doble-check the results was the penalty formu-
lation [5, 15].

3. Compute the sensitivities using a third party code: FATODE
[14].

4. Use real finite differences to approximate whole sensitivities
or individual derivatives. This approach can be very inaccu-
rate or even completely useless.

5. Use complex finite differences to approximate whole sen-
sitivities or individual derivatives. This approach is much
more reliable than the previous one, but more complex to
implement.

Compute the sensitivities using FATODE
The code computes the direct dynamics and sensitivities us-

ing adjoint techniques. Since the derivatives are provided by the
user, the comparison can only detect errors in the algorithms but
not in the derivatives.

The forward, adjoint, and tangent linear integration of ODEs
(FATODE) is a library which provides explicit/implicit Runge-
Kutta and Rosenbrock integrators for nonstiff and stiff ODEs.
The forward model can solve ODE systems. The tangent linear
model and the discrete adjoint model are used by the integrators
in FATODE to perform sensitivity analysis. To use the integra-
tors in FATODE for the forward simulations, two basic functions,

f(t,y,ρρρ) and
∂ f
∂y

, are required. Besides, the objective function

ψ , which is defined in (84), and several additional functions are
also required for sensitivity analysis. In addition, for sensitiv-
ity analysis, an additional function is required by the integrators
to initialize the adjoint variable λλλ s and µµµs before the backward
simulation. The functions to define and their connections with
the equations of this work, are the following.

ψ: the objective function, which is defined as follows:

ψ = r (y(tF) ,ρρρ)+
∫ tF

t0
g(y,ρρρ)dt (84)

f(t,y,ρρρ): the right-hand side function of the ODE, which is
defined in (58).
∂ f
∂y

: the Jacobian of the right-hand side function with respect

to the state vector, which is defined in (69).
∂ f
∂ρρρ

: the Jacobian of the right-hand side function with re-

spect to the parameters, which is defined in (70).
g(y,ρρρ): the function which is defined in (84).
∂g
∂ρρρ

: the partial derivative of g(y,ρρρ) with respect to the pa-

rameters ρρρ .
∂g
∂y

: the partial derivative of g(y,ρρρ) with respect to the state

vector y.
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λλλ s: the sensitivities of the objective function ψ with respect
to the initial conditions, which is µµµ from (38). λλλ s should be
initialized to be 0 from (43).
µµµs: the sensitivities of the objective function ψ with respect
to the parameters. In this paper, µµµs is the output of the sen-
sitivities. It should be initialized to be 0

These functions are provided to the adjoint fully implicit Runge-
Kutta solver to compute the forward solution and the sensitivi-
ties.

Real and complex differences approximation
Although impractical from the computational point of view,

the finite differences approximation can be very useful to detect
errors in the derivatives. The first order approximation for the
derivatives with real perturbations, read as follows.

dψ

dρρρk
=

ψ (ρρρ +δek)−ψ (ρρρ)

δ
(85)

The truncation error in this case is ϑ(h), where h is the time-
step, so it can be controlled decreasing it. Nevertheless, small h
results in loss-of-significance (cancellation) errors due to the sub-
straction. This fact can make this derivatives completely useless
or untrustworthy.

The first order approximation for the derivatives with com-
plex perturbations is the following.

dψ

dρρρk
=

ℑ(ψ (ρρρ + iδek))

δ
(86)

Where i is the imaginary unit and ℑ is the imaginary part of
a complex number. The approach is much more trustworthy than
the previous one, since there are no loss-of-significance errors
involved in the calculation of the approximation, because there
are not substractions in the imaginary parts and therefore the in-
crements can be chosen arbitrarily small. The practical difficulty
to apply complex finite differences is that not all codes can be
changed easily to accommodate complex arithmetic. Special at-
tention should be paid to the third party functions involved in the
code (transpose functions, norm functions, numerical integrator
chosen, etc).

This approach was used in this study to validate all the
derivatives and results presented.

NUMERICAL EXPERIMENT
The mechanism chosen to test the formulations proposed in

the paper is the five bar mechanism with 2 degrees of freedom
shown in Fig.1. The five bars are constrained by five revolute

2

1 3

A B

1
m

1
m

1,5 m1,5 m

1 m 1 m 1 m

k1=100
k2=100L01
L02

FIGURE 1. FIVE BAR MECHANISM

joints located in points A, 1, 2, 3 and B. The five bars are con-
strained by five revolute joints located in points A, 1, 2, 3 and B.
The masses of the bars are m1 = 1 kg, m2 = 1.5 kg, m3 = 1.5 kg,
m4 = 1 kg and the polar moments of inertia are calculated under
the assumption of a uniform distribution of mass. The mecha-
nism is subjected to the action of gravity and two elastic forces
coming from the springs. The stiffness coefficients of the springs
are k1 = k2 = 100 N/m and their natural lengths are initially cho-
sen L01 =

√
22 +12 m and L02 =

√
22 +0.52 m, coincident with

the initial configuration shown in Fig.1.
The mechanism can be balanced by properly selecting the

two parameters ρρρT = [L01,L02]. Of course the problem can be
solved by means of the static equations but the aim here is doing
so by dynamical optimization.

The objective is to keep the mechanism still in the initial po-
sition which can be represented mathematically by the following
objective function.

ψ =
∫ tF

t0
(r2− r20)

T (r2− r20)dt (87)

Where r2 is the global position of the point 2 and r20 is the
initial position of the same point.

The condition to obtain the minimum is the following.

∇ρρρ ψ = 0 (88)

The gradient (88) was obtained by the following approaches:

1. Direct sensitivity: using equation (34).
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FIGURE 2. MECHANISM RESPONSE.

2. Adjoint sensitivity, explicit ODE: using equation (66).
3. Adjoint sensitivity, semi-explicit ODE: using equation (81).
4. Adjoint sensitivity with FATODE.
5. Numerical sensitivity with real perturbations.
6. Numerical sensitivity with complex perturbations.

The response of the system is shown in Fig.2 for a 5 sec-
onds simulation. The upper plot represents the horizontal and
vertical velocities of the point 2 while the lower one represents
the energy taking as reference for the potential energy the initial
configuration of the system.

The results for the sensitivities with the mentioned methods
are presented in Table 1.

TABLE 1. RESULTS FOR THE FIVE BAR MECHANISM.

Approach Parameters dψ/dL01 dψ/dL02

1: Direct h = 10−2s -4.2300 3.2112

2: Adjoint-1 h = 10−2s -4.2294 3.2092

3: Adjoint-2 h = 10−2s -42294 3.2087

3: FATODE Tol = 10−3 -4.2254 3.2083

4: Num. diff. real δ = 10−7m -4.2288 3.2116

5: Num. diff. complex δ/i = 10−7m -4.2288 3.2116

As can be seen in Table 1, all the approaches, except the nu-
merical sensitivities with real perturbations, offer similar results
which guarantees that the schemes proposed are correct. The
numerical sensitivities with real perturbations are not reliable if
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0
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Objective function evolution

Iterations

ψ
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
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First derivatives of the objective function evolution
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Parameters evolution

 

 

L
01

L
02

FIGURE 3. OBJECTIVE FUNCTION, GRADIENT AND PARAM-
ETERS EVOLUTION.

accurate results for the sensitivities are important for the appli-
cation to tackle. Given the simplicity of the system proposed,
definitive conclusions in terms of efficiency cannot be stated.

The computed sensitivities can be employed for the opti-
mization proposed. All the methods perform similar to solve
the optimization problem. In this case the simulation time was
reduced to 1s and the results for the objective function, deriva-
tives and parameters are presented in Fig.3 for the adjoint-1 ap-
proach. The plots for the direct approach coincide with the ones
presented and they are not presented for clarity.

The optimization converges in three iterations, but in one is
almost done. It is important to remark that approximate deriva-
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tives can be used to calculate the gradient and the optimization
would converge at a lower pace.

Another important remark is that the tolerances in the so-
lution of the forward dynamics are very important in order to
obtain stable solutions for the TLM and adjoint ODEs, both of
them strongly depends on the solution of the dynamics.

CONCLUSIONS
In this paper, two different approaches for the sensitivity

analysis of multibody systems based on Maggi’s formulations
were developed: the direct sensitivity approach and the adjoint
sensitivity approach. For the adjoint sensitivity approach, two
different sets of equations were presented, based on the way to
consider the equations of motion. Moreover, a strategy to vali-
date the computed sensitivities was proposed.

The general expressions obtained can be employed to ob-
tain the sensitivity equations of any ODE-like formulation, even
penalty formulations.

A full strategy to validate the results obtained was proposed,
all the results were tested and validated comparing: the two ap-
proaches between them; the results of another formulation of the
equations of motion; a third party library and numerical results
obtained by means of real and complex perturbations.

Finally, the results obtained were used for the dynamical op-
timization of a multibody system.
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