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ABSTRACT

The real-time simulation of multibody models on embedded systems is of particular interest for controllers
and observers such as model predictive controllers and state observers, which rely on a dynamic model of
the process and are customary executed in electronic control units. This work first identifies the software
techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-
based embedded systems. Automatic Programming and Source Code Translation are the two techniques that
were chosen to generate source code for multibody models in different programming languages. Automatic
Programming gives the possibility to generate procedural code from an object-oriented library and Source
Code Translation allows to write multibody code in an interpreted language and to translate it automatically
to a compiled language for efficiency purposes. Then an implementation of these techniques is proposed.
It is based on a Python template engine for Source Code Generation and on a model-driven translator
for the Source Code Translation. The code is translated from a metalanguage, which is also a Domain
Specific Language, to any of the following three programming languages: Python-Numpy, Matlab,
C++-Armadillo. Two examples of multibody models were taken from the IFToMM benchmark website:
a four-bar linkage with multiple loops and the Andrews’ mechanism. The code for these examples has been
generated and executed on two ARM-based single-board computers: the Raspberry Pi Model Band
the BeagleBone Black. Using compiled languages, real-time was achieved for the first example and
good efficiency was also achieved for the second example despite the low resources and performances of
these embedded systems compared with the performances of actual personal computers. This work shows
that Automatic Programming and Source Code Translation are valuable techniques to develop multibody
models to be used in observers or controllers that are executed in electronic control units.

1 INTRODUCTION
In the Mechatronics industry, the development of control software is divided in three phases [6]:

1. Control software development using a simulation of the plant in a non real-time environment

2. Hardware-In-The-Loop (HIL) simulation and testing in a real-time environment including the target
embedded control module

3. Testing and validation of the controller running on the target embedded control module on the real
prototype

The models of interest in this research are multibody (MB) models representing the dynamics of mechanical
systems. In the first phase, non real-time MB models are commonly used as “plant model” in order to design
controllers in a non real-time environment. In the second phase, real-time MB models have been developed
during the last 15 years for HIL applications like for example Electronic Control Unit (ECU) testing [11,
19, 26]. In these applications, the MB model, which represents the “plant model”, has to be simulated in
real-time on a personal computer or workstation. The inputs and outputs of the model are sent/retrieved
from the ECU that runs the control software. In the scope of this research, ECU refers to an embedded
system in charge of controlling a system with real-time constraints.



Apart from using MB models to help designing and testing controllers, these models can also be used as
part of the control software [10, 25]. For example, state observers [29] and model predictive controllers
[14] rely on a dynamic model of the process. In these cases, the MB model contained in the controller
must be executed on the ECU with the rest of the control software. As ECUs have limited resources and
computational performances, the real-time execution of the numerically-intensive MB simulations is more
challenging than when using a personal computer. In estimation problems using MB models, a considerable
part of the computational cost is due to the evaluation of the model [10, 25]. Therefore, before using MB
models for estimation on embedded systems, it is important to evaluate the techniques required for executing
MB models in real-time on these platforms as well as the maximum model complexity that can be reached
for a particular one.

The continuous improvement of processor performances that took place until recently benefited personal
computers as well as embedded systems. During the last decade, thanks to the handset industry, the mul-
tiple ARM architectures became the leading processor architectures for embedded systems and hand-held
devices because of their reduced cost, heat, power use and their numerous features [8]. They are based
on a Reduced Instruction Set Computing (RISC) architecture as opposed to the Complex Instruction Set
Computing (CISC) architectures used in Personal Computers (PC). ARM processor performances enabled
since the early 2000’s the use of modern Operating Systems (OS) on embedded systems, like embedded
GNU/Linux [20]. Moreover, ARM floating point architecture (VFP) provides hardware support for floating
point operations in double-precision floating point arithmetic. As a consequence, ARM-based embedded
systems are ideal candidate platforms for running numerically-intensive MB simulations.

This research aims first at identifying the software techniques required to easily program and develop MB
models to be executed on ARM-based embedded systems. Then, an implementation of these software
techniques is proposed in order to assess the maximum model complexity that can be reached for real-time
MB simulations on two particular platforms.

The paper is organized as follows: section 2 focuses on Automatic Programming and Source Code Trans-
lation techniques for the generation of minimal procedural source code in several programming languages.
Section 3 presents the MB models and the embedded systems used for benchmarking. The settings of the
embedded systems for real-time simulations, the benchmark results and performance comparisons are also
discussed in this section. Finally, section 4 draws the conclusions. The importance of the tools developed
for Automatic Programming and Source Code Translation in the context of the real-time simulation of MB
models on ARM-based embedded systems is highlighted.

2 AUTOMATIC PROGRAMMING AND SOURCE CODE TRANSLATION
2.1 Why using Automatic Programming and Source Code Translation for real-time MB models?

Interpreted languages like Mat 1ab [31] or Python with the Numpy library for numerical computing [21]
are well suited for code rapid prototyping, algorithm development or data analysis in Scientific Computing.
However they are not a good choice for real-time MB simulations [4] because of their low computational
efficiency and the lack of determinism of their interpreters (Mat lab engine or CPython interpreter for
example). Instead, compiled languages such as C, C++ or Fort ran using different numerical libraries are
commonly employed for efficient MB simulations [11]. When carefully used, compiled languages do not
impact negatively the determinism of the simulation. Consequently, when real-time MB simulations are
required by the target application, software development is done with a compiled language.

Object-Oriented Programming is a common programming paradigm to build modular, scalable and reusable
software in which code and data are grouped into objects. In contrast, Procedural Programming is a pro-
gramming paradigm based upon procedure calls in which code and data are separated. Both paradigms (one
or the other) are used in the design of libraries for the analysis of MB systems [18].

The early choice of the target programming language and the programming paradigm has two main draw-
backs:

1. software development slowdown: it is difficult to optimally take advantage of interpreted languages



for code rapid prototyping during the software development phase when the chosen programming
language is a compiled one (typically for efficiency reasons). One possibility is to write and test
new code with interpreted languages and, once ready, to translate it into the target language and
incorporate it into the software. These operations are both time-consuming and error-prone. Another
possibility is to use interpreted languages and to translate the code to C/C++ with generic code
generators. MATLAB Coder is a tool that can generate C/C++ code from Matlab. Cython is
a programming language that is a superset of Python [3]. It allows to convert Python code to
optimized C code by adding static type declarations in the hotspots of the Python code. These code
translation tools enable important speed-ups. However the generated code is not always sufficiently
readable to be analysed and/or modified. On top of that, the programmer has no or few control over
the code generation process. This means that with these tools, the generated code is not minimal,
the programmer cannot choose the target programming language nor the target library for numerical
computing and that important code optimizations can be missed. Due to the limited resources and
performance of embedded systems, if some optimizations are not performed on the generated code or
if the library providing the most efficient implementations of the required numerical recipes cannot be
used, the maximum size of the MB model that can be simulated will be smaller or the MB simulation
for a given problem might not be executed in real-time.

2. Procedural or Object-Oriented Programming: each programming paradigm has its strengths and
weaknesses and the developer can only choose one. Procedural programs are straight-forward im-
plementations of algorithms. This means that they are normally easier to read and analyse than their
object-oriented counterpart if they are short. Object-oriented software is more modular, scalable and
reusable. It is therefore more appropriate to build large libraries for example. However the higher
level of abstraction of object-oriented code comes with some loss of efficiency [7, 22]. This overhead
is known as abstraction penalty. For this last reason, there is no consensus on the use of Object-
Oriented Programming (OOP) or Procedural Programming (PP) in embedded systems [22]. It should
also be noted that the performance improvements of embedded systems in the last years mitigates this
problem.

At this point it should be clear that the best scenario for the real-time simulations of MB models on em-
bedded systems is to develop the code using interpreted languages, to organize data and methods in an
object-oriented library, to write the code to be executed in a compiled language with the chosen numeri-
cal library and using procedures instead of objects. OOP or PP considered separately fail to comply with
this best scenario. Automatic Programming (AP) and Source Code Translation (SCT) are the two software
techniques proposed in this research to take advantage of the strengths of both OOP and PP in the same
software.

2.2 Automatic Programming

AP is a programming paradigm in which a program writes another program in order to let the developer
write code at a higher level of abstraction. Typically, a source code generator gathers information from
objects and writes a procedural program. AP is a technique used currently in the fields of embedded systems
[22], Mechatronics [33] and in the Automotive field [12]. The code that is produced by the source code
generator can be efficiently compiled to machine code with modern compilers. It is normally difficult
to further improve by hand this code. AP is an attractive technique as it allows to increase the level of
abstraction without compromising code efficiency.

In the scope of real-time MB applications, AP is a valuable tool. It enables the high-level definition of MB
models. The definition files of MB models can be read and interpreted by an object-oriented library which
contains both data and methods. Finally a source code generator can generate minimal procedural code for
a particular model. In few words, AP for real-time MB applications combines the following advantages:

e high-level definition of MB models

e generation of procedural minimal source code that avoids software overheads

e reduced compilation time as only the minimal code has to be compiled. For embedded systems, this
means that the source code can be cross-compiled from the development PC to the embedded system
(i.e. cross build) or even built natively on the embedded system if a compiler is available (i.e. native
build).



e generated source code for MB models can be exported to other libraries (e.g. library for Estimation)

2.3 Source Code Translation

A translator is a program that maps input constructs to output constructs [24]. It allows to implement new
Domain Specific Languages (DSL) and programming languages by translating them to existing languages.
As mentioned in section 2.1, the use of a single programming language (like C or C++) to develop a software
limits the ability of developers in taking advantage of other languages (like Mat lab or Python) for the
development of new algorithms. However, in the field of MB analysis, it can be noted that the mathematical
operations commonly used are identical for all the languages and numerical libraries except for their syntax.
Subsequently it is possible to write the different functions of a program in one language and translate them
to other languages. The primary language can be qualified as a metalanguage and a DSL (in the remaining
part of this paper, it will be referred only as metalanguage for the sake of simplicity). The other languages
are target or object languages. In short, Source Code Translation has the following advantages:

code rapid prototyping in an interpreted language instead of a compiled language to extend the library
choice of the most suitable programming language for the target application

choice of the most suitable library for numerical computing for the target application

maximum efficiency can be reached using compiled programming languages and efficient numerical
libraries

e genuine comparison of the accuracy and efficiency of different implementations of a MB model (lan-
guage, numerical library, MB formulation, etc) can be performed

2.4 Software implementation for Automatic Programming and Source Code Translation

AP and SCT can be done in many ways. The implementation proposed in this research is presented hereafter.
A library based on the general-purpose, high-level, interpreted programming language Python 3 has
been built. This programming language has been chosen because it is cross-platform, its standard library
provides useful tools like the ast module (discussed later) and it is readily available for all the GNU/Linux
distributions. GNU/Linux is the main target OS for embedded systems in this research. Three sets of target
programming language and numerical library have been selected:

e Python-Numpy for code rapid prototyping, easy debugging and cross-platform simulations

e Matlab for the same reasons as above and for its widespread use in numerical simulations

e C++-Armadillo for computational efficiency [27]. Armadillo is based on a delayed evaluation
approach during compile time to combine several operations into one in order to reduce or eliminate
the need for temporaries. Only dense matrices have been used.

Figure 1 shows a scheme of the structure of the software. The user provides a file containing the definition
of a MB model. Then the object-oriented library core parses it and encapsulates the information in the
corresponding objects. After that, source code is generated using the Python template engine Jinja2
and print statements. Then, the resulting generated code is translated from the metalanguage to the target
programming language. A standalone file containing the MB model programmed in the target language and
target numerical library is now available to the user. The source code generation (SCG) and the SCT are
both discussed hereafter in greater detail.

Source Code Generation via template engine - A template engine is a piece of software designed to
combine one or mores templates with a data model to produce one or more result documents. The Python
template engine Jinja2 has been selected to generate the part of the source code that is too specific to
a particular language to be written in metalanguage. This represents only a minimal part of the generated
source code.

Source Code Translation via metalanguage - As mentioned in section 2.3, a metalanguage is a useful
tool to write MB code once and for all the target languages. Instead of creating a new metalanguage
from scratch, the metalanguage used in this research is based on an extension of the grammar of Python
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Figure 1: Source Code Generation via templates and metalanguage.

3. This has the advantage of allowing the developer to program both the library core and the MB code
contained in the library in one single language: Python 3. The implemented translator is a model-driven
translator [24] meaning that first an Abstract Syntax Tree (AST) for each metalanguage piece of code is
created. Then every AST is walked and output is generated with print statements based on the grammar
of the target language. As an example of this process, equation (1) shows the Newton-Raphson method used
by the implicit integrator mentioned in section 3.1. The AST corresponding to the solution of this linear
system is shown in figure 2a. It was automatically generated by the ast module of the Python standard
library, Every node of this AST has to be translated following the rules defined in the grammar of the target
language. Figure 2b shows the translation rule of the solve function for all the target languages.

of(q)
[8(1 iAqurl = — [f(q)]; M
/\ Language Function solve
Aqu solve Python—-Numpy numpy.linalg.solve
Matlab \
{8f(q\[f(q)] C++-Armadillo solve
9q i ' (b) Grammar rules for the solve function

(a) Metalanguage AST

Figure 2: Example of AST and grammar rule for Source Code Translation

3 BENCHMARK OF MB MODELS ON DIFFERENT PLATFORMS
3.1 IFToMM benchmark examples

Two MB models were taken from the /FToMM benchmark website [30] and their source code was generated
using the different available combinations of language and numerical library. These models are briefly
presented hereafter.

N-loop four-bar linkage: this 2D one degree-of-freedom mechanism is an assembly of N-loop four-bar
linkages, as shown in figure 3a. It is made of thin rods of 1 m length with a uniformly distributed mass
of 1 kg and moves under the effect of gravity. This mechanism undergoes singular configurations. When



the mechanism reaches the horizontal position, the number of degrees of freedom instantaneously increases
from 1 to N+1. Some formulations have problems to overcome this situation. The simulation time is 10
s and the fixed integration time step 10 ms. The complete description of the problem including the initial
conditions can be found in the IJFToMM benchmark website. It has been modelled using planar natural
coordinates leading to 2N+2 variables and 2N+ constraints associated to the constant distance condition
of each rod. The equations of motion are given by the index-3 augmented Lagrangian formulation [13]
shown in equation (2).

M{+ @ a® + A" =Q

(2)
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where M is the mass matrix (constant for this example), q are the accelerations, ®4 is the Jacobian matrix
of the constraints, « is the penalty factor, ® is the vector of constraints, A* are the Lagrange multipliers
and Q is the vector of applied and velocity dependent inertia forces. The Lagrange multipliers for each
time-step are obtained from an iterative process where the value of Aj is equal to the A* obtained in the
previous time-step. Regarding the integration scheme, the implicit single-step trapezoidal rule has been
selected. The difference equations of this integrator have been introduced into the equations of motion and
then solved using a Newton-Raphson scheme as shown in [15]. Finally cleaned velocities q and cleaned
accelerations ¢ were obtained using mass-orthogonal projections [9].

Andrew’s mechanism or seven-bar linkage: this 2D mechanism is composed of seven bodies connected
by joints without friction, as shown in figure 3b. The numerical constants were taken from [16, 28]. This
example has a very small time scale thus requiring small time steps. Mixed coordinates [13] were used
leading to 11 variables and 10 constraints associated to the constant distance of each body and to the angle
B. The equations of motion are given by the index-1 augmented Lagrangian formulation [13] shown in
equation (3).

Mg + & a® + & A" =Q )
Ao =X +ad  i=0,1,2..

Regarding the integration scheme, the implicit single-step trapezoidal rule has been selected. The differ-
ence equations of this integrator have been introduced into the equations of motion and then solved using
a Newton-Raphson scheme as shown in [9]. Finally cleaned positions q and cleaned velocities q were
obtained using mass-orthogonal projections [9].
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(a) N-loop four-bar linkage (b) Andrews’ mechanism

Figure 3: Benchmark MB examples



3.2 ARM-based embedded systems

Within the innumerable number of embedded systems available on the market, ARM-based single-board
computers (SBC) are good candidates to run the numerically-intensive MB simulations [8]. There exists a
multitude of them ranging from boards with a single-core processor and 64 MB of RAM up to boards with
an eight-core processor and 3 GB of RAM. Usual Operating Systems (OS) are Android or a distribution
of GNU/Linux such as Ubuntu or Fedora.

The two ARM-based embedded systems that were selected in this research are the Raspberry Pi
Model B (RPI) [17] and the BeagleBone Black (BBB) [2]. These single-core processor SBCs run a
distribution of GNU/Linux. Some specifications of interest for both SBCs are summarized in Table 1.

(a) BeagleBone Black (b) Raspberry Pi

Figure 4: tested ARM-based embedded systems

Table 1: main specifications of the RPI and the BBB.

Processor Freq. Lldcache | Llicache | L2cache | SDRAM oS
BBB | ARM Cortex A8 | 1GHZ 32 KB 32KB | 256KB | siamp | Uountu13.10
kernel 3.8
RPI | ARM 1176JZE-S | 700MHz | 32 KB 32 KB 128KB | 512MB Raspbian
kernel 3.10

3.3 Settings for real-time simulations

Section 2 dealt with software techniques for generating efficient code for a MB model. This is a necessary
but not sufficient condition to run MB models on embedded systems in real-time. Numerous definitions
of real-time system can be found in the literature [22]. The one taken into account in this research is: "A
real-time system is one whose logical correctness is based on both the correctness of the outputs and their
timeliness". It is worth mentioning that in the field of MB systems, the word real—t ime is mainly used
to refer to efficient computational methods instead of being related to the determinism of the system or
simulation.

As mentioned in the previous section, the OS of both embedded systems is a distribution of GNU/Linux.
For this OS, two approaches exist to improve its real-time performances [5, 32]. The first approach is to
patch the kernel in order to make it more preemptible thus improving interrupt latency, context switching
time, scheduling latency and providing a finer timer granularity [1]. The second approach is to use a sub-
kernel. In this case, a small real-time kernel runs the Linux kernel as a low priority task. Both approaches
were followed for the BBB (due to the availability of the CONFIG_PREEMPT_RT patch for Ubuntu 13.10)
and only the second approach was followed for the RPI. Then, minimal source code for the MB models
was generated using C++-Armadillo. As described in [23], the highest real-time priority was given to
the process and all pages were locked into memory in order to avoid page faults. Finally, the dynamic CPU
frequency scaling was disabled by using the utility cpufreq to set the CPU frequency to its maximum (as
shown in table 1).

Following the test proposed in [23], the nanosleep benchmark was executed on the BBB to assess the
jitter of this SBC. The jitter dropped from a few milliseconds for the vanilla Linux kernel to about 50



microseconds for the patched kernel. It is worth mentioning that if a vanilla Linux kernel is used for
executing a real-time MB simulation with for example a 5 ms time step, the jitter mentioned above and the
integration time step will in the same order of magnitude. Whether this is an acceptable situation or not
depends on the requirements of the application.

3.4 Results and comparison between ARM-based embedded systems and personal computer

Simulations using both aforementioned MB models have been carried out using the BBB and the RPI. Every
simulation has been executed several times and only the fastest execution time has been taken into account.
The dispersion of the execution times was much lower when using the CONFIG_PREEMPT_RT patch than
with the vanilla Linux kernel. The only load on the processor of the SBCs was the MB simulation and an
ssh connection.

Figure 5 shows, on a logarithmic scale, the real-time factor for the N-loop four-bar linkage in function of the
number of variables. This number was increased by changing the number of loops of the mechanism. The
real-time factor is the ratio of the simulation time and the execution time; thus real-time simulations have
a real-time factor superior or equal to 1. The solid lines correspond to the C++—-Armadillo simulations.
The simulation times for the BBB and the RPI are very similar despite the different ARM architectures and
the different CPU frequencies. For both of them, the maximum number of variables for real-time simula-
tions is 40. To be considered safe, a real-time system should have a CPU utilization factor between 51%
and 68% [22]. This implies that the number of variables has to be lower than 40 for having a safe real-time
system. Then, the dashed lines correspond to the Pyt hon—-Numpy simulations. They are approximately
60 times slower than the C++ ones for the BBB and 150 times for the RPI. As expected, Python—Numpy
is not an option for real-time MB simulations on embedded systems but is a good tool for code rapid de-
velopment (see section 2). The origin of the important difference between both SBCs for Python—-Numpy
simulations is probably due to the different Python interpreter versions. The BBB with Ubuntu 13.10
uses CPython 3. 3.2 while the RPI with Raspbian uses CPython 3.2.3.
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Figure 5: Real-time factor for the N-loop four-bar linkage on the RPI and the BBB

Table 2 presents the execution times for the Andrews’ mechanism. The simulation time was 0.03 s and
the time step size was 0.01 ms. Real-time was not reached due to the very small time step imposed by the
nature of the problem. The difference in execution time between C++-Armadillo and Python-Numpy
are similar to the one of the other example.

In order to evaluate the impact of using ARM-based SBCs instead of CISC-based PCs, a simulation of the
N-loop four-bar linkage with 2 loops was executed on a personal computer running Ubuntu 13.10 on
an Intel Core i7-3740QM processor. The simulation settings were the same as the one mentioned
in section 3.3. The CPU frequency was fixed at 2.7 GHz. Table 3 shows the corresponding execution
times. For C++-Armadillo the simulations on the SBCs were between 15 and 60 times slower while for



Table 2: Simulation time (s) of Andrews’ mechanism on ARM embedded systems.

BBB RPI
Python-Numpy 29.47 | 949176
C++-Armadillo | 1.3026 1.4364

Python-Numpy they were between 30 and 60 times slower than for the PC. These numbers give an idea
of the slowdown that can be expected for MB code when using ARM-based SBCs instead of CISC-based
computers.

Table 3: Simulation time (s) of a double four-bar linkage on ARM and CISC processors.

BBB RPI 1i7-3740QM
Python-Numpy 8.2430 | 34.1409 0.5574
C++-Armadillo | 0.1278 | 0.2706 0.0045

4 CONCLUSIONS

This research has first identified the software techniques required to easily program and develop MB models
to be executed on ARM-based embedded systems. Automatic Programming is the technique that allowed
to generate minimal source code from the high-level definition of a MB model. It gives the possibility to
decouple the use of object-oriented programming for the structure of the software and the use of procedural
programming for the generated MB code. Source Code Translation is the technique used to translate the
generated minimal source code to a target language, using the corresponding grammar. Developers can
therefore generate MB code in their preferred target language, improve the standalone generated file and
then include these modifications back into the MB library.

In the second phase of this research, an implementation of the aforementioned techniques has been pro-
posed. Automatic Programming has been done using a Python template engine and print statements.
The developed MB library is object-oriented and programmed in Python 3 while the generated code
is procedural and programmed in metalanguage. Source Code Translation has been implemented with a
model-driven translator. An abstract syntax tree is first built from the generated code and then walked to gen-
erate the translated code based on the grammar of the target language. Target languages for both code rapid
prototyping (Python—-Numpy and Mat 1lab) and computational efficiency (C++-Armadillo) were im-
plemented.

Finally, the code for two MB examples taken from the IFToMM benchmark website has been generated
using the developed library. Every generated MB code was executed on two ARM-based single-board com-
puters running a distribution of Embedded GNU/Linux. The use of the CONFIG_PREEMPT_RT patch and
sub-kernels for improving the determinism of the Linux kernel were taken into account. These benchmarks
have demonstrated that the simulations in C++-Armadillo can be executed faster than real-time on the
proposed embedded systems. The maximum number of variables of a MB model for real-time simulations
on these embedded systems depends on multiple factors: integrator, time step size, CPU utilization factor,
multibody formulation, numerical library, etc.

Regarding future work, this research has shown that executing real-time rigid multibody simulations on
ARM-based embedded systems is feasible and realistic. As a consequence, a possible extension of this
work could be to use rigid multibody models for Estimation and/or Control of mechanical systems on
ARM-based embedded systems.
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