
Benchmarking of augmented Lagrangian and Hamiltonian formulations for multibody system dynamics

ECCOMAS Thematic Conference on Multibody Dynamics

June 29 - July 2, 2015, Barcelona, Catalonia, Spain

Benchmarking of augmented Lagrangian and Hamiltonian
formulations for multibody system dynamics

Francisco González∗, Daniel Dopico∗, Roland Pastorino∗†, Javier Cuadrado∗

∗Laboratorio de Ingeniería Mecánica

University of La Coruña

Mendizábal s/n, 15403 Ferrol, Spain

[f.gonzalez, ddopico,

rpastorino, javicuad]@udc.es

† PMA division,

Department of Mechanical Engineering

KU Leuven

Celestijnenlaan 300b, 3001 Leuven, Belgium

roland.pastorino@mech.kuleuven.be

Abstract
Augmented Lagrangian methods represent an efficient way to carry out the forward-dynamics

simulation of mechanical systems. These algorithms introduce the constraint forces in the dynamic

equations of the system through the use of a set of multipliers. While most of these formalisms

were obtained using the system Lagrange’s equations as starting point, a number of them have

been derived from Hamilton’s canonical equations. Besides being efficient, they are generally

considered to be very robust, which makes them especially suitable for the simulation of systems

with discontinuities and impacts. In this work, we have focused on the simulation of mechanical

assemblies that undergo singular configurations. First, some sources of numerical difficulties in the

proximity of singular configurations were identified and discussed. Afterwards, several augmented

Lagrangian and Hamiltonian formulations were compared in terms of their robustness during the

forward-dynamics simulation of two benchmark problems. The effect of the formulation and

numerical integrator choice and parameters on the simulation performance was also assessed.
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1 Introduction
Forward-dynamics simulation of multibody systems is a relatively new area in the field of Mechan-

ics. The progress in computer architectures and software tools during the last decades has boosted

both research and industry applications of this technique. Real-time applications such as Human-

and Hardware-in-the-Loop (HiL) setups are especially demanding in terms of both efficiency and

robustness. As a consequence, a considerable effort has been made within the multibody commu-

nity to develop fast and reliable simulation algorithms to satisfy these requirements.

Generally speaking, multibody systems consist of a set of rigid or flexible links interconnected

by joints. The consideration of the kinematic constraints introduced by the latter usually leads to

the need for expressing the dynamics equations as a system of Differential Algebraic Equations

(DAE’s). Different approaches can be used to solve such a system, among which Lagrange’s

multiplier method is a widely used one [1].

If a mechanical system is described with a set of n generalized coordinates q, subjected to m
holonomic kinematic constraints ΦΦΦ, the equations of motion can be expressed as

Mq̈+ c = f+ fc (1a)

ΦΦΦ(q, t) = 0 (1b)

where M is the n×n mass matrix, c contains the Coriolis and centrifugal forces, and f and fc are

the applied and constraint forces, respectively. Following a Lagrangian approach, the generalized

constraint reactions can be expressed as fc = −ΦΦΦT
qλλλ , where ΦΦΦq = ∂ΦΦΦ/∂q is the m× n Jacobian

matrix of the constraints and λλλ is a set of m Lagrange multipliers.

One of the first augmented Lagrangian algorithms for multibody dynamics was introduced by

Bayo et al. in [2]. The proposed method combined a penalty representation of the constraint
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forces with an iterative update of the Lagrange multipliers. An extension of the method to handle

nonholonomic constraints was also included in [2]. Subsequently, several related methods based

on the augmented Lagrangian approach have been developed and can be found in the literature. An

implementation of the algorithm in [2] aimed at real-time efficiency was published in [3]. In [4]

and [5] mass-orthogonal projections were used together with the augmented-Lagrangian formu-

lation to ensure the satisfaction of the kinematic constraints. These two papers included index-3

versions of the algorithms as well, in which the dynamic equations were combined with the nu-

merical integrator formulas. The resulting system of DAE’s was solved in an iterative fashion

following a Newton-Raphson scheme, thus improving the robustness of the method. The original

algorithms in [4] and [5] were designed for holonomic constraints alone; an index-3 augmented

Lagrangian algorithm able to deal with nonholonomic constraints was later described in [6]. The

above mentioned formalisms and other similar ones have been successfully used in the study and

simulation of a wide variety of mechanical systems. Application examples include heavy machin-

ery simulators [7], biomechanics [8], and co-simulation settings for vehicle dynamics [9].

It is also possible to obtain the dynamics equations using Hamilton’s canonical equations as start-

ing point. Following this approach, the equations of motion become a system of first order Or-

dinary Differential Equations (ODE’s) of size 2n, instead of a system of n second order ODE’s.

Augmented Lagrangian algorithms based on Hamilton’s canonical equations can also be found in

the field of multibody dynamics, e.g. [10], [11]. It was stated in [11] that the methods based on

canonical equations are more robust than their classical augmented Lagrangian counterparts and

ensure a better satisfaction of the kinematic constraints. This was supported by the performance

comparison of two formulations, one representative of each approach, in the dynamic simulation

of mechanical systems with singular configurations. Although both algorithms were able to deal

with the test problems, the Hamiltonian one did not show pathological behaviour in any of the

simulations carried out by the authors. However, these formulations have received comparatively

less attention in the literature since they were first presented to the multibody community. Naudet

et al. [12] developed a recursive algorithm based on canonical momenta, although they did not

follow an augmented Lagrangian approach. The authors affirm in [12] that a possible reason why

Hamiltonian equations are rather infrequent in multibody applications is that they are computation-

ally intensive to construct and they cannot compete with acceleration based algorithms, especially

recursive ones. More recently, Malczyk et al. [13] combined the Divide and Conquer Algorithm

(DCA) with Hamilton’s canonical equations to obtain a parallel algorithm. Their preliminary re-

sults suggested that their Hamiltonian approach can outperform the Lagrangian one in terms of

accuracy in the enforcement of kinematic constraints and conservation of the mechanical energy

of the system.

In this paper, a performance study of several existing augmented Lagrangian and Hamiltonian

methods for multibody dynamics is presented. Special attention was paid to their behaviour in the

proximity of singular configurations. The comparison of the different algorithms was done using

test examples from the IFToMM benchmark problem library [14].

2 Augmented Lagrangian formulations
Several formulations were selected for this study among the many available in the literature. The

ones described in [2], [11], and [4] were chosen because they share a similar structure of the

dynamics equations. In the following, natural coordinates [15] are assumed to be used in the mod-

elling. This has two important consequences. First, term c vanishes from the dynamics equations.

Second, the mass matrix M becomes constant, and so all its derivatives are zero.

2.1 Penalty formulation
Even though it is not an augmented Lagrangian one, it is convenient to briefly describe here the

penalty formulation introduced in [2]. This formulation replaces the kinematic constraints ΦΦΦ with
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penalty spring-damper-mass systems. This is achieved introducing fictitious potential and kinetic

energy terms in the integral action A of the mechanical system, as well as a set of dissipative forces.

The constraint reactions are then replaced by forces proportional to the constraint violations at the

acceleration, velocity, and configuration levels

λλλ = α
(
Φ̈ΦΦ+2ξ ωΦ̇ΦΦ+ω2ΦΦΦ

)
(2)

where α is the penalty factor, and ξ and ω are Baumgarte’s stabilization parameters [16]. Together

with the velocity- and acceleration-level expression of the kinematic constraints ΦΦΦ

Φ̇ΦΦ = ΦΦΦqq̇+ΦΦΦt = 0 (3)

Φ̈ΦΦ = ΦΦΦqq̈+ Φ̇ΦΦqq̇+ Φ̇ΦΦt = 0 (4)

where ΦΦΦt = ∂ΦΦΦ/∂ t, Eq. (2) allows for the transformation of the system of DAE’s (1) into a system

of n second order ODE’s(
M+ΦΦΦT

qαΦΦΦq
)

q̈ = f−ΦΦΦT
qα

(
Φ̇ΦΦqq̇+ Φ̇ΦΦt +2ξ ωΦ̇ΦΦ+ω2ΦΦΦ

)
(5)

Terms α , ξ , and ω are n× n matrices in the general case but for simplicity they are treated as

scalars in this document.

2.2 Index-1 and index-3 augmented Lagrangian formulations
The penalty formulation in Eq. (5) has the disadvantage of being very sensitive to the value of

the penalty factor α in terms of convergence. Additionally, a certain violation of constraints is

required to develop the necessary reaction forces fc, so a complete fulfilment of the constraints can

never be achieved. The augmented Lagrangian formulations proposed in [2] and [4] intended to

overcome these limitations. The Lagrange multiplier method was applied to the solution of Eq. (5)

to obtain the index-1 iterative algorithm(
M+ΦΦΦT

qαΦΦΦq
)

q̈+ΦΦΦT
qλλλ ∗ = f−ΦΦΦT

qα
(
Φ̇ΦΦqq̇+ Φ̇ΦΦt +2ξ ωΦ̇ΦΦ+ω2ΦΦΦ

)
λλλ ∗i+1 = λλλ ∗i +α

(
Φ̈ΦΦ+2ξ ωΦ̇ΦΦ+ω2ΦΦΦ

)
(6)

where λλλ ∗ are the m modified Lagrange multipliers and subscript i stands for the iteration number.

If the multipliers are updated only once, then this formulation is equivalent to the penalty one in

Eq. (5). Position-, velocity-, and acceleration-level mass-orthogonal projections were also used in

[4] to ensure an accurate satisfaction of the kinematic constraints.

In [4] and [5] the augmented Lagrangian algorithm in Eqs. (6) was combined with the Newmark

numerical integration formulas [17]

q̇k+1 =
γ

βh
qk+1− ̂̇qk ; ̂̇qk =

γ
βh

qk +

(
γ
β
−1

)
q̇k +h

(
γ

2β
−1

)

q̈k+1 =
1

βh2
qk+1− ̂̈qk ; ̂̈qk =

1

βh2
qk +

1

βh
q̇k +

(
1

2β
−1

)
q̈k (7)

where h is the integration step-size, β and γ are scalar parameters of the integrator formulas,

and subscript k denotes the time-step, to obtain an index-3 algorithm with the system generalized

coordinates q as primary integration variables. Establishing the dynamic equilibrium at time-step

k+1 yields

Mqk+1 +βh2ΦΦΦT
qk+1

(
λλλ ∗k+1 +αΦΦΦk+1

)−βh2fk+1−βh2M̂̈qk = g(q, q̇) = 0 (8)

where the assumption that the velocity and acceleration projections remove the constraint viola-

tions at those levels has been used. The system of nonlinear equations in Eq. (8) is then solved by

means of a Newton-Raphson iterative approach[
dg(q, q̇)

dq

]
i
ΔΔΔqi+1 =−g(q, q̇)i (9)
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The leading matrix in Eq. (9) can be approximated as [5][
dg(q, q̇)

dq

]
∼= M+ γhC+βh2

(
ΦΦΦT

qαΦΦΦq +K
)

(10)

where C =−∂ f/∂ q̇ and K =−∂ f/∂q. The Lagrange multipliers can be updated during the itera-

tive process in Eq. (9) as

λλλ ∗i+1 = λλλ ∗i +αΦΦΦi (11)

The index-3 augmented Lagrangian formulation (ALi3) described by Eqs. (8)–(11) with velocity

and acceleration projections features excellent robustness and efficiency properties and it has been

successfully used in real-time simulation of medium-size and large multibody systems [7], [9].

2.3 Formulation based on Hamilton’s canonical equations
Formulations based on Hamilton’s canonical equations constitute an alternative to the classical,

acceleration-based augmented Lagrangian algorithms. They introduce the conjugate or canonical

momenta p = ∂L/∂ q̇, where L is the system Lagrangian, as system variables besides the gen-

eralized coordinates q [1] . With the definition of the Hamiltonian H = pTq̇− L the canonical

equations for a constrained system can be written as [11]

q̇ =
∂H
∂p

; −ṗ =
∂H
∂q
− fnc +ΦΦΦT

qλλλ (12)

where fnc are the non-conservative forces applied to the system. Following a procedure similar to

the one described in [2], an augmented Lagrangian algorithm can be developed from Eqs. (12).

Again, a fictitious potential energy term and dissipation forces are introduced in the Lagrangian

and a penalty approach is followed to obtain [11]

(
M+ΦΦΦT

qαΦΦΦq
)

q̇ = p−ΦΦΦT
qα

(
ΦΦΦt +2ξ ωΦΦΦ+ω2

∫ t

t0
ΦΦΦdt

)
−ΦΦΦT

qσσσ (13)

where t0 is the starting time of the motion and σσσ are the formulation multipliers, which verify

σ̇σσ = λλλ . The time derivatives of the canonical momenta can be explicitly obtained from equation

ṗ = f+ Φ̇ΦΦT
qα

(
Φ̇ΦΦ+2ξ ωΦΦΦ+ω2

∫ t

t0
ΦΦΦdt

)
+ Φ̇ΦΦT

qσσσ (14)

and the multipliers σσσ are iteratively updated following

σσσ i+1 = σσσ i +α
(

Φ̇ΦΦ+2ξ ωΦΦΦ+ω2
∫ t

t0
ΦΦΦdt

)
(15)

The algorithm in Eqs. (13)–(15) can also be used in a penalty fashion if the number of updates of

the multipliers in each evaluation of q̇ is set to just one.

3 Rank deficient Jacobian matrices and singular configurations
The application of the Lagrangian approach to the dynamics equations (1), together with the dif-

ferentiation of the kinematic constraints (1b) with respect to time, results in a system of linear

equations that can be written as follows[
M ΦΦΦT

q
ΦΦΦq 0

][
q̈
λλλ

]
=

[
f

−Φ̇ΦΦqq̇− Φ̇ΦΦt

]
(16)

If the Jacobian matrix ΦΦΦq is rank deficient, the leading matrix of system (16) becomes singular.

This means that an infinite set of values of the Lagrange multipliers λλλ are valid solutions of the
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system and some additional assumptions must be made to choose one solution among all the

possible ones [18]. Rank deficient Jacobian matrices can be the consequence of the presence of

redundant kinematic constraints. In this case, the Jacobian matrix is usually rank deficient during

the whole motion of the system. Another possibility is the existence of singular configurations

in the workspace. When the system reaches one of these singularities, the number of degrees of

freedom (DoF) suddenly increases and the Jacobian matrix undergoes a loss of rank.

All the algorithms presented in Section 2 are able to deal with rank deficient Jacobian matrices.

The leading matrices in Eqs. (5), (6), (10), and (13) are all symmetric and positive-definite, pro-

vided that an appropriate penalty factor α has been selected. The use of the penalty technique

is equivalent to assuming a certain stiffness distribution within the system and this reduces the

number of valid solutions for λλλ to only one [19]. However, they may still experience numerical

difficulties in the proximity of singular configurations.

3.1 Benchmark examples
Several multibody systems involving redundant constraints and singular configurations can be

found in the IFToMM library of benchmark problems [14]. Among these, we have selected three

for the comparison of the dynamic formulations in Section 2. The first one is a six-link rectangu-

lar Bricard mechanism (Fig. 1). This is a redundantly constrained, one-DoF mechanical system

frequently used as benchmark problem (e.g. [20]). The set of kinematic constraints which are

linearly dependent cannot be a priori identified, as it changes during motion. Therefore, redundant

equations cannot be simply eliminated from the constraint set ΦΦΦ, and the Jacobian matrix ΦΦΦq is

permanently rank deficient. However, the system does not reach any singular configuration during

its entire range of motion.

�
�

��
�

�
�

�
�

�
�

�
�

�
�

Figure 1: A six-link rectangular Bricard mechanism, a redundantly constrained multibody system

without singular configurations.

Two planar linkages were chosen as examples of systems that undergo singular configurations: a

slider-crank mechanism and a double four-bar linkage (Fig. 2). These were already used in [11] to

discuss the performance of augmented Lagrangian formulations in the simulation of systems with

singular configurations. Both are made up of rods of length l = 1 m with a uniformly distributed

mass mb = 1 kg and a square cross section of width r = 0.1 m, connected by revolute joints.

Gravity (g = 9.81 m/s2) acts in the negative direction of the y axis in the three examples.

The forward-dynamics simulation of the motion of the Bricard mechanism can be used to show that

the augmented Lagrangian formulations described in Section 2 are able to successfully deal with

rank deficient Jacobian matrices derived from the presence of redundant constraints. Conversely,

numerical difficulties were observed during the simulation of the systems in Fig. 2 when they were

near a singular configuration.

3.2 Behaviour of the formulations in the neighbourhood of a singular configuration
The slider-crank mechanism in Fig. 2a is in a singular configuration when its two rods are aligned

on the global y axis. The linkage has one DoF during the rest of its motion, but at this configu-
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Figure 2: Benchmark problems with singular configurations: (a) slider-crank mechanism; (b)

double four-bar linkage.

ration a new degree of freedom instantaneously appears. The singular configuration is in fact a

bifurcation point, after which the system can continue its slider-crank motion or start to behave

as a simple pendulum with point P3 stopped at the global origin of coordinates. Both motions

are actually possible when the linkage is exactly in the singular configuration and momentarily

becomes a two-DoF system. The singular configuration for the four-bar linkage (Fig. 2b) happens

when all the links are aligned on the global x axis; again, we have a bifurcation point at which two

alternative motions are simultaneously feasible.

3.2.1 Change in the subspace of admissible motion in singular configurations
It can be useful to decompose the system velocities into its components contained in the subspaces

of admissible and constrained motion [21] to highlight the role of singular configurations as bifur-

cation points. Given a mechanical system described with a set of n generalized velocities q̇, the

m kinematic constraints at the velocity level (3) can be used to define the subspace of constrained

motion (SCM). The dimension of the SCM is the rank of the Jacobian matrix ΦΦΦq, so this subspace

will be m-dimensional if the kinematic constraints are linearly independent. The subspace of ad-

missible motion (SAM) complements the SCM. The system velocities can be then decomposed

into two components as q̇ = q̇a + q̇c where q̇a is the set of generalized velocities admissible with

the velocity-level constraints in Eq. (3); q̇c is the velocity set which is not admissible with the

constraints, i.e. constraint violations.

The slider-crank example can be modelled with three planar natural coordinates: the x and y co-

ordinates of point P2, x2 and y2, and the x coordinate of point P3, x3. Two kinematic constraints,

enforcing constant distances between the tips of the rods, are necessary to ensure the correct mo-

tion of the assembly. The corresponding equations at the velocity level are

Φ̇ΦΦsc
=

[
2x2 2y2 0

2(x2− x3) 2y2 2(x3− x2)

]⎡⎣ ẋ2

ẏ2

ẋ3

⎤
⎦= ΦΦΦsc

q q̇sc = 0 (17)

where q̇sc and ΦΦΦsc
q are the generalized velocities and the Jacobian matrix of the slider crank with

the selected modelling. Let us consider that at t = 0 link P1–P2 is at an angle φ = φ0 = π/4

with respect to the x axis, and that ẋ3 = −4 m/s. At time t = ts the system reaches a singular

configuration, in which φ = π/2, x2 = x3 = 0, and y2 = l m. For t < ts, the Jacobian matrix ΦΦΦsc
q

has rank two and any admissible velocity set can be expressed as

q̇sc
a = η

⎡
⎣ 1

−x2/y2

x3/(x3− x2)

⎤
⎦ (18)

where η is a scalar. At t = ts, the system is in a singular configuration, and the Jacobian matrix

becomes

ΦΦΦsc
q
∣∣
ts
=

[
0 2l 0

0 2l 0

]
(19)
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which is a rank-1 matrix. The SCM for this instant is a one-dimensional subspace. Consequently,

the SAM has dimension two. Among the several alternatives to parametrize this subspace a possi-

ble one is

q̇sc
a |ts = η1

⎡
⎣ 1

0

2

⎤
⎦+η2

⎡
⎣ 1

0

0

⎤
⎦= η1q̇sc

a1 +η2q̇sc
a2 (20)

where η1 and η2 are scalar parameters. Vector q̇sc
a1 corresponds to the slider-crank motion of

the mechanism, while q̇sc
a2 represents a single pendulum motion with point P3 fixed at the origin.

The condition x2 = x3 makes both branches simultaneously possible, so the velocity vector q̇ of

the system can have components along both q̇sc
a1 and q̇sc

a2. However, when the system leaves the

singular configuration at t > ts it reverts to a one-dimensional SAM, which will be either the slider-

crank one compatible with q̇sc
a1 or the simple pendulum motion defined by q̇sc

a2, depending on how

the numerical integration process proceeded at t = ts.

This reasoning can be generalized to any 1-DoF mechanical system. The introduction of an extra

DoF at a singularity momentarily expands the set of admissible velocities, which becomes a linear

combination of a velocity vector in continuity with the pre-existing system motion, q̇a1, and a new

one q̇a2 which is also compatible with the constraints. Both components are only simultaneously

admissible at the singular configuration; at this point q̇a =η1q̇a1+η2q̇a2. After the singularity, one

of the components will define the motion and the other one will become a violation of the velocity-

level constraints. Augmented Lagrangian formulations based on penalty approaches transform

the constraint violations into constraint reactions, as shown in Eq. (2). Accordingly, penalty-

based formulations remove the velocity component along the no longer admissible direction by

introducing an impact when the system leaves the singular configuration.
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Figure 3: y reaction force at point P1 during motion of the slider-crank mechanism, starting from a

singular configuration, (a) for different initial velocities; (b) for different initial configuration-level

constraint violations ε .

The forward-dynamics simulation of the slider-crank motion starting from the singular configu-

ration supports the previous statements. As correctly pointed out in the literature (e.g. [11]), the

simulation can be started from a singularity because the formulations in Section 2 are able to find a

solution for the dynamics equations even with a rank deficient Jacobian matrix. Here, the penalty

formulation in Eq. (5) was used with a penalty factor α = 107, Baumgarte parameters ω = 10 and

ξ = 1, and the trapezoidal rule as integrator (a particular case of the Newmark formulas (7) with

β = 0.25 and γ = 0.5), with a step-size h= 10−3 s. First, the initial velocity was made proportional

to q̇sc
a1 by choosing η1 = −2 m/s and η2 = 0. Afterwards, η2 was given different non-zero values

and the simulation repeated for each of them. Fig. 3a shows that introducing a component of q̇
along q̇sc

a2 gives rise to impact forces in the constraint reactions. Numerical experiments with the

other formulations described in Section 2 showed the same behaviour. Moreover, the simulation

of a 10 s motion of the four-bar linkage (Fig. 2b) confirmed that the obtained reaction force in
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the x direction at point P0 featured the same impact forces (Fig. 4a). To obtain these results, the

ALi3 formulation with velocity and acceleration projections, Eqs. (7)–(11), was used, with strin-

gent convergence requirements to ensure that the constraint violations at the configuration and

velocity levels remained close to machine precision. Similar force spikes can be observed in other

publications in the literature (e.g. [22]). It should be stressed that the velocity component along

q̇a2 cannot be eliminated by the velocity projections at the singular configuration, because it is

not a violation of the constraints at that point. As expected, these impacts are not present in the

simulation of redundantly constrained mechanisms without singular configurations, as in the case

of the Bricard mechanism (Fig. 1).
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Figure 4: (a) x reaction force at point P0 during motion of the four-bar linkage, showing impacts

when the system is near a singularity; (b) mechanical energy of the slider-crank mechanism inte-

grated with the forward Euler method (h = 10−5 s) and the penalty formulation (α = 108, ω = 10,

ξ = 1). A change of branch occurs at t = 2.17 s.

The impact forces above described introduce a series of undesirable effects in the simulations if

the numerical integrator and the formulation parameters are not properly selected. They generate

discontinuities in the mechanical energy of the system, as shown in Fig. 4b. Sometimes they can

cause the mechanical system to undergo a change of branch when it leaves the singular configu-

ration. In this case, a discontinuity in the motion takes place and the system velocities after the

singularity are no longer in continuity with the pre-singularity motion compatible with q̇a1, but

with the secondary one defined by q̇a2. In extreme cases they may bring about the failure of the

simulation.

3.2.2 Effect of configuration-level constraint violations
The formulations in Section 2 are rather robust and they are able to handle large impact forces

during the pass through singularity. Numerical simulations showed that η1 and η2 need be of the

same order of magnitude for a change of branch to take place in most cases. The exception is

the index-3 augmented Lagrangian formulation. For example, starting the simulation of the slider-

crank at the singular configuration with η1 =−1 m/s and η2 =−5 ·10−5 m/s results in a pendulum

motion after the singularity, with α = 109 and a step-size h= 10−3 s. Such values of η2 are usually

not reached in practice because the velocity projections keep this component small during most of

the motion.

A configuration-level constraint violation, however, alters the expression of the Jacobian matrix

ΦΦΦq and modifies the definition of the constrained and admissible subspaces. A modification of

the generalized coordinates not compatible with the constraints, εεε , makes the Jacobian matrix

become Φ̃ΦΦq = ΦΦΦq (q+ εεε). In general, Φ̃ΦΦqq̇ �= 0, even though the system velocities have theoreti-

cally correct values. This means that part of the admissible generalized velocities will be treated

as velocity-level constraint violations, giving rise to the impact forces described in the previous

section. Fig. 3b shows the impact forces in the simulation of the slider-crank mechanism with
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the penalty formulation and the same parameters of Section 3.2.1 starting from the singularity. A

configuration error was introduced in the initial position by making x2 =−ε and x3 = ε . The sim-

ulations showed that the effect of configuration-level constraint violations is much more critical

than their velocity-level counterparts. For instance, an initial error in the order of ε = 10−2 m is

enough to trigger a branch change with η2 = 0.

4 Numerical results
The existence of singular configurations is not the result of a deficient modelling or the wrong

choice of simulation strategy, but a property of some mechanisms. Even though a simulation

algorithm be able to deal with rank deficient Jacobian matrices, the enlargement of the SAM in

the singularity points described in Section 3.2.1 remains. In fact, all the methods mentioned in

Section 2 have been found to fail near singular configurations in the simulation of the slider-crank

mechanism and the four-bar linkage for certain values of their α , ξ , and ω parameters.

The natural motion of a mechanism would keep the continuity of the velocities during the pass

through the singularities. In other words, the ideal simulation of the system motion should not

introduce impact forces in the reactions at the singular configurations. Conversely, large values

of these impact forces may result in discontinuities in the mechanical energy, which can lead to

changes of branch or the failure of the simulation if the algorithm is unable to recover from the

impact. Keeping low the violation of the kinematic constraints, especially the configuration-level

ones, is a way to reduce the magnitude of the impact forces. This is in accordance with guidelines

provided in the literature (e.g. [10], [11]). A simulation algorithm based on a penalty approach

must therefore meet two requirements: good constraint stabilization, especially at the configura-

tion level, and robustness to withstand impact forces. A correct adjustment of the penalty factor

α and the stabilization parameters ξ and ω is necessary to satisfy these requirements. In both the

penalty and the augmented Lagrangian formulations, the constraint reactions are proportional to Φ̈ΦΦ,

Φ̇ΦΦ, and ΦΦΦ as shown in Eq. (2). Increasing the value of ω assigns more weight to the configuration-

level constraint violations, which is convenient to overcome singular configurations. To achieve a

similar effect in the Hamiltonian formulation in section 2.3, the term 2ξ ωΦΦΦ in Eq. (15) must have

a larger weight than the other terms in the equation.

Table 1: Best performances obtained with each formulation in a 10 s simulation of the slider-crank

mechanism motion, for a maximum energy drift of 0.1 J. The forward Euler integration formula

was used in all cases.

Formulation ω , ξ adjustment h (s) α ω ξ elapsed time (s)

Penalty manual 2 ·10−5 108 25 1 1.53

Penalty automatic 1 ·10−5 106 1.41 ·105 0.707 3.08

Aug. Lagrangian manual 1 ·10−5 107 10 1 3.83

Aug. Lagrangian automatic 1 ·10−5 107 1.41 ·105 0.707 3.85

Aug. Hamiltonian manual 2 ·10−3 109 0.1 1000 0.02

Table 1 shows the performance of each formulation in a 10 s simulation of the slider-crank mech-

anism motion. The numerical experiments were carried out in an Intel Core i7-4790K at 4.00

GHz. The single-step explicit forward Euler formula was used as integrator. For the penalty and

the index-1 augmented Lagrangian formulation, the ω and ξ were automatically set to ξ = 1/
√

2

and ω =
√

2/h in a first approach [23]. These parameters were subsequently tuned to improve the

simulation efficiency. This proved to be a time-consuming process with the penalty formulation,

as energy conservation is noticeably affected by changes in the formulation parameters. On the

other hand, the augmented Lagrangian method showed a much more consistent behaviour for a
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wider range of the parameters. The parameters of the Hamiltonian formulation were manually

adjusted to penalize the configuration-level constraint violations at least 200 times more than the

other terms in Eq. (15). Results showed that the augmented Hamiltonian formulation described in

Section 2.3 can be one or two orders of magnitude faster than the penalty or the index-1 augmented

Lagrangian formulation in the studied case.

Table 2: Best performances obtained with each formulation in a 10 s simulation of the slider-

crank mechanism motion, for a maximum energy drift of 0.001 J. The selected integrators were

the forward Euler method (FE) and the trapezoidal rule (TR).

Formulation Integrator Tolerance h (s) α ω ξ elapsed time (s)

Aug. Hamiltonian FE − 2 ·10−5 109 0.1 1000 2.10

Penalty TR 10−7 10−4 107 1000 1 0.33

Aug. Lagrangian TR 10−7 10−3 107 200 1 0.06

Aug. Hamiltonian TR 10−7 2 ·10−3 109 0.1 2000 0.13

ALi3 TR 10−5 10−3 109 − − 0.07

Next, the simulations were repeated for a maximum admissible energy drift of 0.001 J, as required

by the problem definition in [14]. With the exception of the augmented Hamiltonian formulation,

it was impossible to meet this requirement using the forward Euler integrator with reasonable

step-sizes. The trapezoidal rule was used as an alternative. This integrator introduces an iterative

process in each time-step. It was observed that this process may diverge in the proximity of

a singularity. This requires the detection of divergence and the interruption of the iteration for

the simulation to proceed successfully. Results are summarized in Table 2. Similar results were

obtained for a 10 s simulation of the motion of the double four-bar linkage and are shown in

Table 3.

Table 3: Best performances obtained with each formulation in the 10 s simulation of the double

four-bar linkage motion, for a maximum energy drift of 0.1 J. The selected integrators were the

forward Euler method (FE) and the trapezoidal rule (TR).

Formulation Integrator Tolerance h (s) α ω ξ elapsed time (s)

Penalty FE − 2 ·10−5 107 30 1 2.50

Aug. Lagrangian FE − 5 ·10−6 107 10 1 12.21

Aug. Hamiltonian FE − 10−3 109 0.1 1000 0.07

Penalty TR 10−7 5 ·10−3 108 25 1 0.04

Aug. Lagrangian TR 10−7 5 ·10−3 108 20 1 0.05

Aug. Hamiltonian TR 10−7 5 ·10−3 109 0.1 1000 0.10

ALi3 TR 10−7 10−2 109 − − 0.02

The numerical experiments showed that a robust and efficient performance in the simulation of

systems with singular configurations depends not only on the selected dynamic formulation, but

also on the numerical integration formulas. For instance, the augmented Hamiltonian formulation

shows very good energy conservation properties with an explicit single-step integrator like the for-

ward Euler scheme. This allows one to carry out the simulations with a step-size larger than the

one used with the penalty or augmented Lagrangian methods, as it can be seen in Tables 1 and 3.

This comparative advantage is lost if the trapezoidal rule is used instead. The ALi3 algorithm with

projections of velocities and accelerations showed a very robust behaviour. Possible reasons for
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this are the implementation of the numerical integrator in Newton-Raphson form with the gener-

alized coordinates as primary variables instead of fixed-point iteration, and the use of projections

to remove constraint violations.

5 Conclusions
Penalty-based Lagrangian methods for multibody system dynamics can deal with rank-deficient

Jacobian matrices but still suffer from numerical difficulties near singular configurations. These

problems give rise to impact forces that can introduce sudden variations of the mechanical energy

and cause the simulation to fail. In this research, benchmark problems were used to compare sev-

eral augmented Lagrangian formulations in terms of their ability to carry out an efficient simulation

while keeping the mechanical energy constant. It was found that the selection of the numerical in-

tegrator plays a key role in this. In particular, iterative integrators may diverge at the singularity,

and so provisions must be made to stop the iteration process if this happens. In all cases, keeping

the constraint violations at the configuration level under a certain threshold was required to obtain

a successful simulation. This constitutes a guiding principle in the adjustment of the formulation

parameters. Additionally, the formulations must be robust enough to deal with large impact forces.

This suggests that implementing the algorithms in Newton-Raphson form can be advantageous in

problems with singularities, which is currently an open line of research.
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