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ABSTRACT

Traditional kinematic formulations that are often used to model and analyse multibody systems
have advantages, ones with respect to others, in terms of computational efficiency, which make
them more suitable for real-time applications and in terms of versatility, which facilitates the mod-
elling and solving multibody systems. A topological formulation which allows an efficient solution
and facilitates the automatic modelling of multibody systems would fill the gap that currently ex-
ists between these traditional formulations, taking advantage of their benefits and mitigating their
drawbacks. In this paper, a topological formulation based on the decomposition of a multibody
system into a set of kinematic chains whose kinematics can be solved independently, based on
group-coordinates, is introduced. The main objective is to evaluate the efficiency of this formu-
lation considering different levels of specificity in solving the kinematic chains that defines the
kinematic structure of the multibody system. To this end, two scalable systems with up to 550
coordinates have been modelled and solved with a global formulation, as a reference, and with
up to four solutions based on group-coordinates formulation. The main conclusions drawn by the
analysis carried out in this work shows that this topological method offers a greater modularity,
flexibility and efficiency than the global method, so it may be of interest both to develop automatic
modelling procedures and improve the efficiency in computation time using this formulation.

Keywords: Kinematic structure, Computational kinematics, Group coordinates.

1 INTRODUCTION

Computational kinematic analysis plays a fundamental role in the study of mechanical systems. It
is not only necessary in multibody dynamics formulations, frequently is employed as a first stage
in the design of mechanical systems (dimensional and/or kinematic synthesis) and, sometimes, the
interest in the multibody system (MBS) is purely kinematic (position analysis, range of movement,
transmission angle, etc.). Two different families of formulations are normally used in the kinematic
analysis of multibody systems: global and topological.

In the global approach, a simple body joint inspection is enough to identify the degrees of freedom
that are constrained by each type of kinematic pair. A set of dependent coordinates (reference
point, natural or mixed) is introduced to define the model, e.g. [xz vz xc yc 6;] in Fig.1.a. Those
dependent coordinates are then related through the corresponding constraint equations due to rigid-
body and kinematic-pair conditions.

Topological approaches require a detailed study of the kinematic structure of the multibody system
to perform a kinematic analysis. There exist different formulations that exploit the topology of the
MBS. In the method based on closed-loop identification, the closed-loops have to be opened so as
to yield a tree-like structure of the mechanism (Fig.1.b), and then, the kinematic relations among
bodies due to the joints connecting them can be defined, along with the loop-closure equations
which relate the system dependent (6, 03) and independent (6;) coordinates [1-3]. In the method
based on structural group (SG) decomposition, the multibody system is split into SG (e.g. SG-I
and SG-II, Fig.1.c) and the variables and constraint equations that each SG introduces into the
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Figure 1: a) Four bar linkage with given input 6. b) Tree-like structure and coordinates. c) Split
into structural groups: SG-I and SG-II and coordinates.

system (SG-I: 6, xg yp and SG-II: xp yp) can be included in kinematic and dynamic formulations
to obtain the response of the whole system.

For both global and topological formulations there exist a permanent interest in the scientific
community in improving the efficiency of the solution and facilitating the automatic modelling
of multibody systems. The global formulation is the best suited for automatic modelling of
MBS [4-8] but at expenses of its efficiency. Topological formulations based on the decompo-
sition of the system into independent closed-loops [1-3, 9, 10] are more efficient but they lack
generality. The topological approach based on SG decomposition combines the advantages of
both formulations and could fill the gap between the two.

Because of its interest, the main objective of this paper is to introduce and evaluate the efficiency
of a topological formulation based on the kinematic structure of a MBS. To that end, section 2
resumes the basic concepts of the structural analysis and explains how to obtain the kinematic
structure of a MBS. Section 3 introduces the algorithms that solve the kinematics of a MBS using
its kinematic structure and section 4 defines two case studies which will be used to study the
capabilities and efficiency of the proposed method. Section 5 shows and discusses the results
derived from the case studies finally, the main conclusions and future developments of the present
work are drawn in sections 6 and 7.

2 KINEMATIC STRUCTURE OF A MULTIBODY SYSTEM

The theory of Structural Analysis defines a Structural Group as any kinematic chain whose num-
ber of independent chain inputs 7. coincides with its mobility L. (n. = L.). The kinematic chains
which satisfy this condition and have neither excessive constrains, nor additional DOF due to
special geometric considerations among their bodies, are defined as normal SG [11], statically
determined SG [12], or desmodromic kinematic chains. Furthermore, kinematic chains that can-
not split into SG of smaller number of bodies are denominated simple SG. From the simple SG
condition and using the Griibler criterion to determine the mobility of a kinematic chain, a useful
expression to check whether a given kinematic chain forms a SG or not is obtained (Eq.1). In Eq.1,
S, indicates the number of degrees of freedom allowed by the P kinematic pairs formed by the N,,
mobile bodies.

S.—n.=3-(P—N,) (1)

2.1 Obtaining the MBS Kinematic Structure

The kinematic structure of a multibody system defines which SG it is composed of and the specific
order in which their SG kinematics have to be solved. Both graph-analytical and computational
methods ( [11] and [13] respectively) can be employed to obtain the kinematic structure of the
MBS; due to its simplicity the former one is introduced and applied to a four-bar linkage (Fig.2.a).
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Figure 2: Four-bar linkage. a) Kinematic graph. b) Structural graph. c) to f) Steps to perform
structural analysis through its structural graph. g) Structural diagram.

In the graph-analytical method, the topology of the MBS is represented by its structural graph
(Fig.2.b): vertices correspond to bodies and edges to kinematic pairs. The number of edges con-
necting two vertices equals the degrees of freedom (DOF) or relative movements allowed between
them. Finally, a number of these edges, equal to the n. independent movements defined between
the bodies of the kinematic pair, become bold lines referred to as root edges.

The kinematic structure of the MBS is obtained in a very simple manner as depicted in Fig.2.c-f
following four basic steps. First step: frame 1 isolation and DOF assignment (Fig.2.c). The DOF
allowed by each pair in which the frame participates are assigned to the bodies (2 and 4) that forms
a kinematic pair with the frame (directed edge). The later bodies become candidates to be a SG.
Second step: Search for a SG from shorter to larger length. Each one of the candidates is checked
to satisfy Eq.1. Here, body 2 is selected (Fig.2.d). The number P of kinematic pairs in which
the bodies of the kinematic chain participate are accounted for as the sum of the internal pairs
and, from the external pairs, only those with a directed edge (a DOF has been assigned). Thus,
for this solid we find that condition in Eq.1 is satisfied and this body is SG, as: P =1, S, =1,
n. =1, N,, = 1. Third step: Re-assign DOF. If a kinematic chain forms a SG, the DOF of its
external pairs are assigned to the corresponding external bodies. In the example, body 2 is a SG
and assigns the DOF (2 — 3) to the body 3, which now is a new candidate (Fig.2.¢). There are no
more assignments. Fourth step: Turn to Step 2. Bodies 3 and 4 are candidates. Starting from
one candidate, e.g. body 3, the parameters of this kinematic chain are: S, = 1; n. = 0; N, = 1;
P =1. After substituting in Eq.1, body 3 shows not to be SG. Body 4 has the same parameters than
body 3 so it is not a SG either. As it is not possible to form SG with a single body, larger chains
have to be considered. Starting from a candidate, e.g. body 3, the chain is expanded by selecting
another body that forms a kinematic pair with the candidate. The chain 3 — 4, whose parameters
are: S, = 3; n. = 0; N,, = 2; P = 3 satisfies equation Eq.1 and therefore is a SG (Fig.2.1).

2.2 Structural diagram

The kinematic structure of a mechanism is graphically represented by its structural diagram
(Fig.2.g). It is composed by as many circles as SG have been obtained plus one, correspond-
ing to the frame, which is identified with the number 0. The two parameters inside each circle
(N, n.) corresponds to the number of movable bodies and input movements of the SG. An arrow
joins two circles if any of their bodies forms a kinematic pair, and is directed in the same way that
the DOF which have been assigned during the structural analysis, showing the order in which the
SG have been obtained and dictating the sequence in which their kinematics have to be solved.
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3 COMPUTATIONAL KINEMATICS BASED ON STRUCTURAL GROUPS

In this section we introduce a method for the kinematic analysis of MBS that takes into considera-
tion its kinematic structure. Two algorithms are described: the sequence defined in a main program
to solve the whole MBS, and a generic subroutine needed to solve the kinematics of any SG.

3.1 Overall procedure

The general sequence in the kinematic analysis of a MBS can be followed in Algorithm 1. After a
data file that models the MBS has been executed, the main program includes three loops. At each
time step (first loop) the simulation time is increased and the values of the independent coordinates
of the whole system are defined. Then, for each SG in the kinematic structure (second loop) the
SG is identified and, depending on its kind (third loop), the appropriated subroutine is called to
solve its kinematics. In Algorithm 2 the aspect of subroutine 3RSG called from the main program
is shown; this subroutine solves the kinematics of 3RSG as explained in the next section.

Algorithm 2: Kinem. Structural Group solution

Solve_3RSG(*ARGS) /* funct.CALL */
Algorithm 1: Kinem: Topol. SG solution .

%% 1. Position problem %
%Read data MBS; evaluate ® — mFi
MBDatos; error = norm(®)

while error > tolerance do
evaluate ®; — Jacob

extract QZ

%MBS Kin. analysis%%
for t =1y : timeStep : ty do

/* set indep.values */ y A
Z=17+Az solve qf = q5_, — (q)q>k71.d)k_1
for ng = 2 : length(MGroups) do evaluate ® — wFi

/* solve each SG */ error = norm(®)

end
switch MGroups(ng).kind do
case MGro;) pg (}‘2_) kind == 1RSG %% II. Velocity problem %%%
| CALL Solve 1RSG(xARGS)  cvaluate ®@q —  Jacob

d. i
case MGroups(ng).kind == 3RSG ~ €Xtract @ ; extract (I)lil
| CALL Solve_3RSG(*ARGS) solve qd _ ((I)g)i ¢:]ql

endsw %% II1. Acceleration problem %%%%
end evaluate quq — Figpgp

end evaluate — [(Df]qi +d>qQ]
-1 . .
solve 49 = — (Qg) [(I)ﬁl('j’ + @qq]

3.2 Kinematic analysis of a SG

From the main program, the kinematics of each SG is solved by calling the corresponding sub-
routine. In order to solve each SG, the appropriate set of group coordinates q are selected and
the corresponding constraint equations @ are defined. The specific subroutine can be programmed
according to the following steps.

Identify the group coordinates and parameters: A local coordinate system attached to each
body is defined and the appropriate set of coordinates (of any kind) that defines the kinematic
chain is selected. We introduce two subsets of group coordinates: dependent ¢ and independent
h. The later might differ from the independent coordinates of the whole system (referred to as
z in many recursive formulations). Other parameters which will depend on the specific SG to
solve have to be identified from the geometry of the problem and the results of the computational
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Figure 3: a) Scalable four-bar linkage is formed by a crank and one dyad. A number (k) of dyads,
as many as required, can be added to the former one in order to control the number of coordinates
of the model. b) Local coordinate systems and group coordinates in a 3R structural group.

structural analysis i.e. reference points needed to identify the h coordinates, dimensions of the
bodies, and so on. As an example, a 3R Assur SG is shown in Figure 3.b. The local systems
({mi&},{n;&;}) are attached to the bodies (i, j) and the dependent @ = [x4, y4], and independent
group coordinates h = [x3, y3, x2, 1| are defined.

Solve the position problem for the SG: To solve the position problem of any SG, the correspond-
ing constraint equations, in accordance to the selected type of coordinates, have to be defined
(Eq.2). For the given set of constraint equations, the terms of the Jacobian matrix ®, can be
analytically or numerically obtained and the Newton-Raphson iterative method can be applied to
obtain the values of the dependent group coordinates at each & iteration step (Eq.2). Depending
on the SG geometry, an explicit solution of the position problem might be possible and should be
taken into account to reduce the computation time.

=0 = Q=0 (‘I’q))/:l“pk—l 2)

Solve the velocity problem: As the values of the independent group velocities h are known, the
velocity problem can be formulated by deriving the constraint equations with respect to time, and
solved for the dependent ones (Eq.3). Not only the Jacobian matrix ®y,, but the whole expression
— ((I>q,) - @y, can be analytically obtained in 2D and 3D structural groups with a reduced number
of constraint equations.

®(q,)=0 — @=— (D)  [@uh] 3)

Solve the acceleration problem: The acceleration problem for the dependent group coordinates
can be solved by deriving the velocity constraint equations with respect to time (Eq.4). Again,
if the matrices involved show a reduced dimension, most of the calculations can be analytically
performed and included into each SG subroutine so that a solver is not needed.

Dyp+ Do, 4 =0 — §=—(Dp) ' [®uhi+by,dg] @

Solve the kinematics of other POIs: Apart from the dependent coordinates, the results of other
points of interest (POIs) might be necessary (i.e. centre of mass, or reference points for other SG).
The position, velocity and acceleration of a POI that belongs to any body ( p € j, Figure 3.b) is
easily obtained by making use of the well known equations of rigid body kinematics.

4 CASE STUDIES

To study the advantages or disadvantages that the topological formulation introduces with respect
to a global one, two scalable systems are used: the four-bar linkage and the truck suspension.
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Figure 4: Bodies that forms the suspension system in one of the axes of a truck (Left). Structural
diagram with SG distribution (Centre). A three axes truck (Right).

4.1 Scalable four-bar linkage

A planar four-bar linkage (Fig.3.a) consists of a crank 4;B;, a rod B;C and a rocker C;D;. To
make the four-bar linkage scalable, an increasing number & of dyads have to be added. Each dyad
introduces two bodies (2k+ 1) and (2k + 2) joined with an internal rotation joint Cy and attached to
the previous dyad and the frame with two external rotation joints By and Dy. This method allows us
to control the number of constraint equations and coordinates in the model. To carry the kinematic
analysis out, the input movement is defined as the crank rotation at a constant velocity 6, = 1
rad/s. All lengths are set equal to 6, except 4181 = 2. In order to let the results be comparable
against the second case study, the crank will complete 4.77 turns so that the simulation time lasts
for 30 seconds.

4.2 Truck suspension

The second MBS corresponds to the suspension system of a truck axes; it is a scalable MBS as an
increasing number of axes can be included in the model. Each one of these axes is a two DOF MBS
composed of thirteen bodies and different kind of kinematic joints. Figure 4 shows the different
bodies that form each one of the axes (left), its structural diagram (center), and a truck with three
axes (right).

The structural diagram shows how many SGs forms a multibody system and the order in which
their kinematics has to be solved. As it can be seen in the figure, one axes is formed by five groups:
SG-1:{2,3,4,5}, SG-II:{6,8} which is similar to SG-III: {10,11}, and SG-IV:{7,9} which is
similar to SG-V:{12,13} (Fig. 5):

e SG-I. This is a two DOF structural group with four bodies 52 — S5 (Fig.5.a). Joints: cardan
(82 — 54 and S2 — S9), spherical (S1 — 54, S1— S5 and S2 — S3), and revolute (S1 — S3). The
independent coordinates are defined as the vertical displacement of both ends of the axes
(points P3 y Py). This SG is modelled with 8 points and 9 vectors. Other points of interest
Py — P; are needed to solve the kinematics of the remaining part of the SG.

e SG-II. This is a SG with null mobility and two bodies S2 y S3 (Fig.5.b). Joints: cardan
(82 — S3), spherical (S1 — S2) and revolute (S3 — §4), being §4 body S2 in SG-I. This SG is
modelled with 3 points, 5 vectors and an additional coordinate 6 which defines the rotation
of §3 relative to 4.

e SG-IIIL. This is a SG with null mobility and two bodies, S2 y S3 (Fig.5.c.). Joints: spher-
ical (S1 — S2), prismatic (S2 — S3) and cardan (S3 — §4), being S4 body S2 in SG-I. This
SG is modelled with 2 points, 5 vectors and an additional coordinate s which defines the
displacement of S2 relative to S3.

93



P7
(a) SG {2,3,4,5} (b) SG {6,8} (¢) SG {10,11}

Figure 5: Kinematic scheme of the truck suspension system.

4.3 Methods

A total of six analyses have been carried out in this work to study the main differences between a
global formulation and a topological one based on structural groups. These analyses are labelled
using the following acronyms: FBL (four-bar linkage), TS (truck suspension), GB (global formu-
lation), TP (topological formulation), and a reference to two sparse solvers: MA27 and MA2S.

The purpose of the Global formulation in FBL-GB_MA27 and TS-GB_MAZ27 is to serve as ref-
erence analysis of the four-bar linkage and the truck suspension system, respectively. As many
global formulations do, each time the system of equations has to be solved for position, velocity
and acceleration analysis, the elements of each vector and matrix involved in those analyses are
obtained by calling specific-purpose subroutines; then the whole MBS is modelled and solved. For
example, to obtain the rigid body constraint of a body defined by two points in natural coordinates,
in a planar MBS, an specific subroutine can be called from the main program. By calling this sub-
routine, with the corresponding arguments, all rigid-body constraints, in the constraints vector, can
be automatically evaluated (i.e. Algorithm 3 and 4).

Algorithm 3: Global: deriving Fi
FUNCT. evalRestrics

%% 1. Rigid Body restrics % Algorithm 4: Evaluate Rigid Body Restriccs
for i =1:1:numRigBdy do FUNCT. restrRBdy2P(Fi,P1,P2,body)
bdy=body (i) ; ptB=pointB(bdy)
ptC=pointC(bdy)
CALL restrRBdy2P(Fi,ptB,ptC,bdy)
FiGlo(id(i),1)=Fi

end

L = length(body)
Fi=(P2(1)—P1(1))*+(P2(2) - P1(2))* - L?

FBL-TP analysis: As the structural groups in the four-bar linkage have a reduced number of coor-
dinates gg, the vector of constraint equations ®, the Jacobian matrix ®,, and the vector d>q T
have their elements defined with symbolic expressions. Moreover, the inverse of the Jacobian
matrix, (I>;G1 , has also been defined so that a solver is not needed for the kinematic analysis.

TS-TP2 MA27 analysis: for the truck suspension system, the same vectors and matrices as in
FBL-TP analysis, with exception of the inverse matrix, has their elements expressed in symbolic
form. Solver MA27 (for symmetric semi-definite positive systems) is used to solve the system of
equations, so that the products <I>§G X @, and (I)g - X @ have also been defined symbolically. The
analysis TS-TP3_MAZ28 only differs from TS-TP2 MAZ27 in the selected solver. Finally, analy-
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sis TS-TP1_MAZ27 differs from TS-TP2 MAZ27 in that the elements of the vectors and matrices
involved in the kinematic analysis are not defined with symbolic expressions, but numerically
evaluated as previously shown for the Global formulation. In that sense, the only difference be-
tween analyses TS-GB_ MA27 and TS-TP2_MAZ27 is that the former solves the whole system of
equations of the complete MBS, and the later solves the MBS by calling each of the SG in the
kinematic structure sequentially. This analysis is important as it demonstrates that even though
symbolic expressions for vectors and matrices in a SG had not been obtained, it is possible to
solve this SG as global formulations would do, while others SG can be solved using a symbolic
form.

All the analyses are programmed in FORTRAN, compiled with MS Visual Studio in RelWithDe-
bInfo mode and run on a Intel Core 15-2400 CPU 3.10 GHz, RAM 16 GB, and Windows7 SP1 64
bits. All the simulations run from #;,; = 0 s to £,y = 30 s and all the MBS have been modelled
with mixed (natural and relative) coordinates.

5 RESULTS AND DISCUSSION

In order to the efficiency of the different solutions be comparable, the position, velocity and ac-
celeration of selected variables from each MBS are compared. As an example, Figure 6.a shows
the stroke evolution of the hydraulic element (SG{10, 11}) in the first axes of the truck suspension
system with respect to the vertical displacement of point P3 while point P remains fixed. Recall
that vertical displacement of points P and Py defines the two DOF of each axes in the MBS. Two
analyses are represented, TS-GB_MA27 and TS-TP2 MAZ27, and the results are identical.

47 T 8-
46N\ Global | | ==0-= FBL-GB_MA27
\ SG 7 FBL-TP
45 N | =—©— TS-GB_MA27
N\ 6| === TS-TP1_MA27
~ 44 N\ TS-TP2_MA27
~_
5 “ % 5 TS-TP3_MA28
2 \ é 4
g =
z N o
/41 A o3
40 N\, 2
\
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18 \ P —— O=mm—m———= B e ?__ :
-
-5 0 5 114 225 336 447 558

Degree of freedom (cm) Number of coordinates

Figure 6: (Left) To validate the formulations some results are compared. (Right) CPU time versus
number of model coordinates for the kinematic analysis of two case studies: Scalable four-bar
linkage (FBL) and truck suspension (TS).

NUM. FOUR-BAR LINK. TRUCK SUSPENSION
COORD. | GB_MA27 TP GB_MA27 TPl MA27 TP2 MA27 TP3 MA2S8
114 0.045 < 0.015 1.258 1.488 0.741 0.668
225 0.123 < 0.015 2.707 2915 1.489 1.327
336 0.264 <0015 4.035 4359 2.235 2.035
447 0.421 < 0.015 5.499 5.909 3.049 2.676
558 0.607 < 0.015 7.066 7.299 3.696 3.422

Table 1: CPU time vs number of coordinates for the kinematic analysis of the two case studies

under different formulations.
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Figure 7: CPU time distribution among specific phases of the kinematic analysis of the truck
system.

5.1 Calculation time for different approaches

In Figure 6.b and Table 1, the calculation time (CPU time) versus the number of coordinates that
defines a MBS is shown for the six kinematic analyses that have been carried out. In all cases,
the CPU time evolves linearly as the number of coordinates increases. Dashed lines correspond
to the four-bar linkage (FBL): the global sparse solution is represented as FBL-GB_MA27 and
the topological solution as FBL-TP. In the later, the CPU time is close to zero even in models up
to 550 coordinates (the number of coordinates has to be increased up to 1000 for the system to
show a CPU time above 0.015 seconds). The global formulation shows a small CPU time for this
mechanism for high number of coordinates.

For the truck suspension system (TS) there are four continuous lines in the graph representing:
the global sparse analysis (TS-GB_MAZ27) and the three topological ones (TS-TP1_MAZ27, TS-
TP2 MA27, TS-TP3_MAZ2S8), all of them defined in the previous section. This graph shows that
when the vectors and matrices involved in the kinematic analysis are automatically evaluated (TS-
GB _MAZ27 and TS-TP1_MAZ27) the CPU time is 1.8 times slower than the other topological so-
lutions (TS-TP2_MAZ27 and TS-TP3_MAZ28) in which those elements are defined with symbolic
expressions. Among the two later topological solutions, solver MA28 seems to be more efficient
than MA27 as the number of coordinates increases although the differences are small.

It is interesting to observe that in the global formulation the CPU time is considerable lower in the
four-bar linkage than in the suspension system, even though both MBS are defined by the same
number of coordinates and make use of the same formulation and solver. When a profile tool
is executed to evaluate how the CPU time is distributed among the different subroutines, it can
be seen that the main differences among the two solutions are due to the higher sparsity of the
Jacobian matrices in the four-bar linkage solution.

5.2 CPU time distribution for different approaches

In order to study more in depth the efficiency of these methods, the Visual profile tool has been
used to watch how the CPU time is distributed among all the operations involved in the analysis of
the truck suspension system (Fig.7.a): the global formulation TS-GB_MAZ27 and the topological
solutions TS-TP1_MA27 and TS-TP2 MA27.
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Together with the total CPU time, this figure shows four main calculations during the solution
process: evaluate restrictions @ and obtain the Jacobian matrices ®,, and solve for the position,
velocity and acceleration problem. The position problem consumes most of the calculation time
due to the high dimension matrix operations in an Newton-Raphson iterative algorithm with a
reduced tolerance (1-107®). In the case of TS-TP2 MAZ27, this represents most of its total CPU
time as all the vectors and matrices needed in the analysis (except the inverse of the Jacobian
matrix) are defined in the corresponding subroutines.

In all the topological methods the acceleration problem (Eq.4) takes more time than the velocity
one (Eq.3), because more vectors have to be evaluated. However, in the global solution the velocity
problem consumes more time due to a new factorization of the Jacobian matrix after the position
problem is solved, which can be used directly in the acceleration problem.

The time consumption in two topological solutions, TS-TP1 MA27 and TS-TP2 _MAZ27, is shown
(Fig.7.b) for each of the following six calculation processes: restrictions, Jacobian and indepen-
dent terms of the linear systems (identified as @*), matrix operations, the three routines of solver
MA27, denoted by AD (pivoting), BD (decomposition) and CD (solve), and other internal pro-
cesses. Pivoting and decomposition are the most time-consuming processes, because of the need
to access those routines during the Newton-Raphson algorithm in the position problem. The ac-
cess to the AD routine in the symbolic solution spends a fewer amount of time than its counterpart,
because the pivots obtained in the first iteration can be stored and used in the following ones (the
same reason holds for the global solution TS-GB_MA27). But the major difference among these
two topological solutions is the time spent in matrix operations which is not necessary in TS-
TP2 MAZ27, as they have been performed in advance.

6 CONCLUSIONS

The kinematic structure of a multibody system (MBS), which can be obtained with both graph-
analytical and computational methods, decomposes a MBS into kinematic chains called Structural
Groups (SQ), in a specific order, whose kinematic analysis can be carried out using specific-
purpose subroutines. Then, solving the kinematics of each SG in the order stated by its kinematic
structure, the kinematic analysis of the whole MBS can be achieved at each time step.

In this work, a topological formulation based on the kinematic structure of a MBS is presented
and four different approaches that solve the kinematics of their SGs have been studied. In order to
evaluate the advantages of this formulation compared to a global one, two scalable MBS with up
to 550 coordinates have been modelled and solved: a planar four-bar linkage with an increasing
number of bodies and the truck suspension system with an increasing number of axes.

The scalable four-bar linkage is formed by adding to a rotating crank as many SG of a certain
type (called 3R-SG) as desired, to achieve an increasing number of coordinates and constraint
equations. As these 3R-SG can be modelled with a set of only six natural coordinates, and only
two of them are unknowns, the specific-purpose subroutine that solves the kinematics of these
3R-SG is very efficient; all the matrices, vectors and even the inverse of the Jacobian matrix of
the constraint equations of this SG are expressed in symbolic form. This is the first and the most
efficient approach to a topological formulation based on the kinematic structure of the MBS, and
can be applied to any kind of SG defined with a reduced number of coordinates.

The kinematic structure of the truck suspension system is formed by SG of different complexity
with a minimum of fifteen unknowns each, so that the inverse of the Jacobian matrix can not be
expressed in symbolic form and a solver is needed; this is, however, the most common situation in
spatial MBS. To deal with this situation, two different methods based on the use of specific-purpose
subroutines that solve the kinematics of each SG are proposed.

In the first method, all the vectors, matrices and the products among them, that are involved in the
kinematic analysis (except the inverse of the Jacobian matrix CD;I) have been defined in symbolic
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form. As the topology of each SG is well known, most of these calculations can be performed
in advance. Two solutions have been implemented in this symbolic form, TS-TP2 MA27 and
TS-TP3 _MA28, being the solver (MA27 or MA28, respectively) the only difference.

The second method, and fourth topological approach (TS-TP1_MAZ27) introduced in this work,
uses specific-purpose subroutines to solve the kinematics of each SG, but its level of specificity
is considerably reduced with respect to the other three solutions. In this case, the vectors and
matrices involved in the kinematic analysis of the SG are numerically evaluated at each time step
(not given in a symbolic form), making use of a set of more generic subroutines that would serve
to solve any kind of SG. This method is directed towards an automatic modelling and solving of
MBS.

The efficiency of the four solutions based on the kinematic structure of the MBS is compared to
that of a global formulation, FBL-GB_MA27, that solves the scalable four-bar linkage, and TS-
GB_MAZ27, which solves the truck suspension system. Moreover, a profile tool has been used for
a detailed study of the time consumed in all the calculations during the kinematic analysis of the
MBS. The results that have been obtained allow us to list some advantages that the topological
methods based on the kinematic structure possess with respect to the global methods:

Flexibility: The topological approach allows the use of any kind of coordinates q (point reference,
relative, natural or mixed coordinates) to model a structural group and solve its kinematics.

Modularity: The topological method introduced in this work is a modular approach. The kine-
matic analysis of each SG can be programmed, optimized and compiled in an independent subrou-
tine which might be included in a extensive library of Structural Groups. This modularity offers
several advantages: facilitates the modelling and solving of any MBS, and the analysis is fast and
reliable.

Generality versus Efficiency: Depending on the number of coordinates needed to model each
SG, different methods can be used to solve its kinematics. These methods go from FBL-TP with a
maximum efficiency and the higher level of specificity, using symbolic expressions to evaluate the
dependent coordinates, to a more generic and less efficient method (TS-TP2 _MA27) which can
be used for the solution of any kind of SG. The former is devoted to a fast and efficient solution
(only available in SG with a reduced number of coordinates) while the later tends to the automatic
modelling of the MBS. Intermediate solutions, TS-TP2 MA27 and TS-TP1_MA28, reduce the
CPU time by half with respect to TS-TP2 MA27 and the global approach TS-GB_MAZ27, inde-
pendently of the number of coordinates in the MBS. The use of symbolic software seems to be
the solution to take profit of the potential advantages of the generic method and obtain specific
symbolic solutions.

In addition, as the kinematic analysis of each SG is performed independently from the others,
the efficiency of any SG subroutine can be improved by selecting the most appropriated solver
depending on the structure of the Jacobian matrix of the system of constraint equations. For
example, MA27 if ®, is semi-positive definite, or MA28 if it is not. The LU factorization of the
Jacobian matrix of each SG can be stored and used at any time step, which improves efficiency.

7 FUTURE DEVELOPMENTS

The topological formulation based on the kinematic structure of the MBS has shown many ad-
vantages with respect to global formulation. This fact encourages us to improve the possibilities
it brings to the computational kinematic and dynamic analysis of MBS, as well as to solve its
drawbacks.

As this is a modular approach, the automatic modelling and solving of a MBS can be improved
in two ways: making use of symbolic software to obtain an efficient and optimized solution to
the kinematics of any SG, and making use of the kinematic structure of the MBS, obtained with
computational methods, to automatically define the analysis sequence.
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Apart from improving the level of automation, the efficiency of this method could be also improved
by including parallel processing and optimizing the use of the best-suited solver to each SG: con-
ventional linear solvers (LAPACK) or other sparse solvers (PARDISO, WSMP or MUMPS) are

only some examples.

Finally, a well known drawback related to all the topological formulations is that the efficiency of
the solution, and even the capability to find a solution itself, depends on the kinematic structure
of a MBS, which is not unique, and might change during the analysis. Methods to find the more
efficient kinematic structure and to allow the solution procedure to change to a different kinematic
structure, at any time step, must be developed to make this formulation both efficient and general.
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