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Abstract
Optimizing the dynamic response of mechanical systems is often a necessary step during the early stages of product
development cycles. For gradient-based optimization methods, this is a complex problem that requires to carry out
the sensitivity analysis of the system dynamics equations. These are often expressed as a highly nonlinear system of
Ordinary Differential Equations (ODEs) or Differential Algebraic Equations (DAEs), if a dependent set of generalized
coordinates with its corresponding kinematic constraints is used to describe the motion. Two main techniques are
currently available to perform the sensitivity analysis of a multibody system, namely the direct differentation and the
adjoint variable methods.

In this paper, we derive the equations that correspond to the direct sensitivity analysis of the index-3 augmented La-
grangian formulation with velocity and acceleration projections (ALI3-P formulation). The analysis is limited to sys-
tems with holonomic constraints. The evaluation of the system sensitivities requires the solution of three Tangent
Linear Models (TLMs): the first one, which is an index-3 augmented Lagrangian DAE problem, corresponds to the
dynamics equations of motion, and the two additional ones are for the velocity and acceleration projections, which are
nonlinear systems of equations. The method was validated in the sensitivity analysis of a five-bar linkage with spring
elements, which had been used as benchmark problem for similar multibody dynamics formulations.
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1. Introduction
Sensitivity analysis of the dynamics of multibody systems is essential for design optimization and optimal control.
Dynamic sensitivities, when needed, are often calculated by means of finite differences but, depending on the number
of parameters involved, this procedure can be very demanding in terms of time, and the accuracy obtained can be very
poor in many cases.

In previous works, the sensitivity equations of index-3 DAE, index-1 DAE, Baumgarte, and penalty formulations
[1, 2, 3, 4, 5, 6, 7, 8] were derived, using either direct differentiation (forward sensitivity), adjoint variable (adjoint
sensitivity) or both methods depending on the publication.

The index-3 augmented Lagrangian formulation with velocity and acceleration projections (the ALI3-P formulation)
is an efficient and robust method to carry out the forward-dynamics simulation of multibody systems modeled in
dependent coordinates, which outperforms the behavior of the aforementioned formulations in many cases. It was
extensively used for the real-time simulation of different systems with human and hardware in the loop, some of them
including complex phenomena like flexibility [9], contact with friction [10, 11], non-holonomic constraints [12], and
singular configurations [13].

In [14] the sensitivity analysis equations of several formulations of interest for this work were derived. Based on those
previous derivations, the forward sensitivity equations of the ALI3-P formulation presented in [12] are derived here
and applied to a test case.

2. ALI3-P formulation
The equations of motion of the ALI3-P formulation were thoroughly described in [12] for holonomic and non-holonomic
systems. A summary of the basics of the formulation is provided here; in this work a simplified version of the formu-
lation, with holonomic constraints only and without the generalized-α integration scheme, will be used.



Let us consider a multibody system modeled in terms of a set of parameters, ρρρ ∈ Rp, with q(ρρρ, t) ∈ Rnc dependent
coordinates related by m holonomic constraints ΦΦΦ(q,ρρρ, t) ∈ Rm. The formulation equations of motion (EOM) have
the following expressions

Mq̈+ΦΦΦ
T
q

(
λλλ
∗(i+1)+αααΦΦΦ

)
= Q (1a)

λλλ
∗(i+1) = λλλ

∗(i)+αααΦΦΦ
(i+1); i > 0 (1b)

where M(q,ρρρ) ∈Rnc×nc is the mass matrix of the system, ΦΦΦq (q,ρρρ, t) ∈Rm×nc is the Jacobian matrix of the vector of
constraints, ααα ∈Rm×m is a diagonal matrix containing the penalty factors associated with the constraints, Q(q, q̇,ρρρ, t)∈
Rnc is the vector of generalized forces, i = 0,1,2, ... is the iteration index of the approximate Lagrange multipliers
λλλ
∗ (ρρρ, t) ∈Rm. These converge for i→ ∞ to λλλ , which are the ones resulting from the solution of the classical index-3

DAE system.

The algorithm in Eqs. (1) is often combined with a numerical integration scheme to solve the dynamics equations
following a Newton-Raphson iterative approach. Several formulas can be used; the Newmark method [15] is a popular
choice
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where β and γ are scalar parameters of the integrator, and h is the integration step-size. Subscript n denotes the time
step. If β = 0.25 and γ = 0.5, Eqs. (2) are those of the well-known trapezoidal rule. When the expressions in Eqs. (2)
are introduced in the equations of motion (1a), establishing the dynamic equilibrium at time tn, the system dynamics is
formulated as the following system of nonlinear equations

g(q, q̇,ρρρ) =
[
Mq+βh2

ΦΦΦ
T
q

(
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∗(i+1)+αααΦΦΦ

)
−βh2Q

]
n
−βh2M̂̈qn−1 = 0 (3)

In each iteration of the Newton-Raphson process an increment of the generalized coordinates is evaluated[
dg(q)

dq

]i

∆qi+1 =− [g(q)]i (4)

with the approximate tangent matrix [
dg(q)

dq

]
= M+ γhC+βh2 (

ΦΦΦ
T
qαααΦΦΦq +K

)
(5)

where K =−Qq =−∂Q/∂q and C =−Qq̇ =−∂Q/∂ q̇. The Lagrange multipliers λλλ
∗ can also be updated during this

iterative process with the expression in Eq. (1b). Upon convergence of the iterative process at time-step tn, the sets
of positions, qn, velocities, q̇∗n and accelerations q̈∗n, are obtained. The set of positions q exactly fulfills the constraint
equations ΦΦΦ = 0, within the convergence tolerance of the algorithm; on the contrary, the satisfaction of Φ̇ΦΦ = 0 and
Φ̈ΦΦ= 0 is not as good and the sets of velocities and accelerations, q̇∗n and q̈∗n have to be projected onto their corresponding
manifolds to obtain their clean counterparts, q̇n and q̈n. The expression for velocities is,(
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(6a)

σσσ
(i+1) = σσσ

(i)+ ςαααΦ̇ΦΦ (6b)

where σσσ are the Lagrange multipliers associated to the projections of velocities, P is the weight matrix (or projection
matrix) and ς is a scalar constant for the weighting of the constraints in the projection.

Similar equations hold for the projections of accelerations.(
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where κκκ are the Lagrange multipliers associated to the projections of accelerations.



The projection equations (6) and (7) follow an iterative augmented Lagrangian scheme as in the case of the equations
of motion (1). The update equations (6b) and (7b) are intended to make the Lagrange multipliers of the projections, σσσ

and κκκ , converge together with the fixed-point iterations (6a), (7a).

In [12], the following choices were proposed for P and ς :

1. The mass-orthogonal projections of Bayo and Ledesma [16]: P = M, ς = 1.

2. The mass-stiffness-damping-orthogonal projections of Cuadrado et al. [17]: P = M+ γhC+βh2K, ς = βh2,
where γ and β are scalar coefficients of the time-stepping integrator chosen.

3. The mass-stiffness-damping-Jacobian-orthogonal projections: P = M+ γhC+βh2
[
ΦΦΦ

T
qq
(
αααΦΦΦ+λλλ

∗)+K
]
, ς =

βh2.

3. Forward sensitivity of the ALI3-P formulation
The problem is to obtain the sensitivity of the following objective function, defined in terms of the parameters, ρρρ ∈Rp,
the states and their derivatives q, q̇, q̈ ∈ Rnc and, maybe, the Lagrange multipliers of the dynamics λλλ

∗ ∈ Rm and the
Lagrange multipliers of the projections σσσ and κκκ ∈Rm.

ψ = w
(
qF , q̇F , q̈F ,λλλ

∗
F ,σσσF ,κκκF ,ρρρF

)
+
∫ tF

t0
g
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)
dt. (8)

The sensitivity of such a cost function is expressed by the following gradient,

∇ρρρ ψ
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(9)

In Eq. (9) the derivatives of functions w and g are known, since the objective function has a known expression. On
the contrary, the magnitudes qρρρ , q̇ρρρ , q̈ρρρ ∈ Rnc×p, λλλ

∗
ρρρ , σσσρρρ , and κκκρρρ ∈ Rm×p are the sensitivity matrices solution of a

set of p DAE systems called the Tangent Linear Model (TLM) of the equations of motion plus p velocity sensitivity
projections and p acceleration sensitivity projections.

The Tangent Linear Model (TLM) of the equations of motion can be obtained by differentiating (1) with respect to each
one of the parameters:
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The sensitivity of the velocity projections is obtained differentiating Eq. (6a) with respect to the system parameters[
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Similarly, the sensitivity of the acceleration projections,[
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Expanding the total derivatives in (10) and (11) and grouping them together in tensor-matrix notation leads to the
following set of p DAEs:

Mq̈∗ρρρ +Cq̇∗ρρρ +
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Mqq̈∗+ΦΦΦ

T
qq
(
λλλ
∗+αααΦΦΦ

)
+ΦΦΦ

T
qαααΦΦΦq +K

)
qρρρ +ΦΦΦ

T
qλλλ
∗
ρρρ =

Qρρρ −Mρρρ q̈∗−ΦΦΦ
T
qρρρ

(
λλλ
∗+αααΦΦΦ

)
−ΦΦΦ

T
qαααΦΦΦρρρ

(14a)

λλλ
∗(i+1)
ρρρ = λλλ

∗(i)
ρρρ +ααα

(
ΦΦΦqqρρρ +ΦΦΦρρρ

)
(14b)

where the following terms are tensor-vector products: Mqq̈≡Mq⊗ q̈, ΦΦΦ
T
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. Using the same notation one obtains the set of projected velocity

sensitivities from Eqs. (12) (
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and the projected accelerations sensitivities from Eqs. (13)(
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where
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Observe that the term dP/dρρρ depends on the selection of the projection matrix. For the numerical experiments reported
in this paper, Bayo’s mass-orthogonal projections were selected. Accordingly,

dP
dρρρ

= Mqqρρρ +Mρρρ (21)

3.1. Algorithm implementation
The TLM in Eqs. (14) features four sets of unknowns, namely qρρρ , q̇∗ρρρ , q̈∗ρρρ , and λλλ

∗
ρρρ . Eq. (14a) can be reduced to a linear

system of equations with the sensitivities qρρρ as only unknowns introducing in it the numerical integrator expressions.
If the Newmark integration scheme is used, then
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and Eq. (14a) becomes, at instant t = tn,(
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(23)



Still, an iterative solution process is required to ensure the convergence of the sensitivities of the Lagrange multipliers,
λλλ
∗
ρρρ , which enter the right-hand side in Eq. (23). Accordingly, this equation must be solved together with the iterative

update provided in Eq. (14b). Upon convergence, the values of the sensitivities qρρρ,n and λλλ
∗
ρρρ,n are known, and the

approximate values of the sensitivities of the velocities and accelerations, q̇∗ρρρ,n and q̈∗ρρρ,n can be obtained from the
integrator equations, (22). Finally, the sensitivities of the projected velocities and accelerations, q̇ρρρ,n and q̈ρρρ,n are
obtained from the solution of the iterative processes in Eqs. (15)–(20). During this stage the sensitivities of the
Lagrange multipliers of the projections, σσσρρρ and κκκρρρ , are evaluated as well.

4. Numerical example
The test case considered in this work is the five-bar mechanism shown in Figure 1. This system is made up of five
homogeneous rods connected by revolute joints at points A, 1, 2, 3, and B, with masses mA1 = m3B = 1 kg, m12 =
m23 = 1.5 kg. Gravity acts along the negative direction of the vertical axis, g = 9.81 m/s2. Two linear springs with
constant stiffness k1 = k2 = 100 N/m connect fixed point B with articulations 1 and 2. As parameters to obtain the
sensitivities, the natural lengths of the springs were chosen, ρρρT = [L01,L02]. The values of these parameters were set to
L01 =

√
22 +12 m and L02 =

√
22 +0.52 m. The system is initially at rest in the configuration shown in Fig. 1.

2

1 3

A B

1
m

1
m

1,5 m1,5 m

1 m 1 m 1 m

k1=100
k2=100L01
L02

Figure 1: The five-bar mechanism

The sensitivities of this system are well known because they were previously obtained using several different formu-
lations and approaches [18, 14]. The problem posed was the sensitivity analysis of the following objective function
dependent on the solution of the equations of motion:

ψ =
∫ tF

t0
(r2− r20)

T (r2− r20)dt (24)

where r2 is the global position of the point 2 and r20 is the initial position, at t = t0, of the same point. Such an objective
function was used in [14] to determine the natural lengths of the springs that make the system stay at rest in its initial
configuration, by solving the unconstrained optimization problem ρρρ = arg min

ρρρ
ψ , nevertheless only sensitivities are of

interest for this work.

The penalty formulation described in [14] was used as reference to validate the results obtained with the ALI3-P method
described in Sections 2 and 3. A 5-s long numerical integration of the dynamics was carried out with the trapezoidal
rule in Eqs. (2) and an integration step-size h = 10−2 s.

Figure 2 shows the x- and y-components of the velocity of point 2 obtained with the penalty and the ALI3-P formula-
tions. The mechanical energy of the system and its components, i.e., kinetic, gravitatory potential, and elastic potential,
are shown in Fig. 3. The system is only subjected to the action of conservative forces and, as expected, the total
mechanical energy remains constant. These results matched those obtained with other formulations, like the matrix R
formulation and the index-1 DAE formulation, reported in [18] and [14].

After the integration of the equations of motion, the system sensitivities were evaluated as well using both the penalty
and the ALI3-P formulations. The system sensitivities were integrated with the trapezoidal rule expressions for sensi-
tivities in Eqs. (22) in the first case, and with the algorithm in Section 3.1 in the latter. Figs. 4–6 show the time-history



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V
el

o
ci

ty
 o

f 
p

o
in

t 
2

 (
m

/s
)

Time (s)

Penalty, x ALI3-P, x Penalty, y ALI3-P,y

Figure 2: Velocities of point 2 obtained with the penalty and the ALI3-P formulations
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Figure 3: Components of the mechanical energy of the five-bar linkage. Both solution methods yielded similar results

of the sensitivities of the x-coordinate of point 2 at the configuration, velocity, and acceleration levels, with respect to
the system parameters. The gradient obtained upon completion of the integration of the sensitivities at time tF = 5 s
with the ALI3-P method was ∇ρρρ ψ = [ dψ/dL01 dψ/dL02 ] = [ −4.2294 3.2114 ]. The value obtained with the
penalty formulation was ∇ρρρ ψ = [ −4.2293 3.2112 ]. These results are in the range reported in [14].

Given the fact that the system under study is subjected only to holonomic constraints, the contribution of the velocity
and acceleration projections in Eqs. (15) and (16) to the sensitivity analysis is relatively small. In systems with
nonholonomic constraints, however, the sensitivity of the projections could not be neglected, as these constraints are
not enforced by the Newton-Raphson iteration in Eq. (4), but only by the velocity and acceleration projections in Eqs.
(6a) and (7a). The contribution could also be relevant in systems with rheonomic constraints.

5. Conclusions
The present paper reports the sensitivity equations that correspond to the index-3 augmented Lagrangian formulation
with velocity and acceleration projections, for multibody systems with holonomic constraints. The sensitivity equations
were formulated as a Tangent Linear Model (TLM) for the Newton-Raphson iterative solution of the dynamics at
the configuration level, plus two additional systems of equations for the velocity and acceleration projections. The
algorithm equations can be combined with the numerical integration formulas to deliver the sensitivities of the system
generalized coordinates as the solution of a system of nonlinear equations; the sensitivities of the generalized velocities
and accelerations are obtained from the solution of the systems of nonlinear equations that result from the differentiation
of the projections equations with respect to the system parameters.
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Figure 4: Sensitivities of the x-coordinate of point 2 with respect to the system parameters, evaluated with the penalty
and the ALI3-P formulations
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Figure 5: Sensitivities of the x-component of the velocity of point 2 with respect to the system parameters, evaluated
with the penalty and the ALI3-P formulations

The proposed method was validated with the sensitivity analysis of a five-bar linkage with linear springs, which had
been previously used in the literature as test problem for other sensitivity formulations. The results were compared to
existing values in the literature to show that the sensitivity analysis of the example delivered correct results.
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