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EXTENDED ABSTRACT

1 Introduction

Modelling and simulating systems with components of different physical nature and time-scale can be challenging, especially if
simulation performance is important [1]. Co-simulation allows for coupling numerical simulations of different subsystems by
exchanging interface variables at discrete communication time-points, which makes this approach modular and convenient for
developing complex models. However, coupling subsystems through interface variables can affect simulation stability due to dis-
continuities and time delay of these variables. Although iterative co-simulation schemes exhibit good numerical stability [2], they
can be prohibitive in real-time applications due to their high computational cost. When non-iterative co-simulation techniques
are used, extrapolation is often used to predict input variables between communication updates [3]. However, using previous
values of the interface variables to extrapolate inputs can give wrong predictions, especially in nonsmooth systems such as those
with unilateral contact.

Interface models can be used to obtain a physics-based prediction of the interface variables [4]. Here, an interface model (IM)
for nonsmooth multibody systems is proposed, which can include unilateral contact and friction. The interaction between the
elements in the system is represented by constraints, and the dynamics of the model at the interface is characterized by effective
mass and force terms. This model can be used in multirate co-simulation setups, where multibody systems are coupled with sub-
systems simulated at higher time-rates; the IM can provide a prediction of the multibody system outputs between communication
points. Additionally, a model of a hydraulic crane is used to show that larger time-step sizes can be used with the proposed IM,
allowing for a reduction in computation time.

2 Dynamics of Nonsmooth Multibody Systems

The p generalized coordinates and the n generalized velocities used to represent a multibody system can be arranged in arrays
q and v, respectively. In general, p ≥ n, depending on the chosen parametrizations. The interaction between the bodies can be
parametrized by a set of nc velocity components arranged in the array wc, which can be related to the generalized velocities as

wc = Av (1)

where A(q) is the nc×n constraint Jacobian matrix. Such interactions can be modelled via kinematic constraints, either bilateral
(wc = 0) or unilateral (wc ≥ 0). The dynamic equations of a multibody system can be written as

Mv̇+ c = fa + fi +AT
λλλ c (2)

where M = M(q) is the n× n mass matrix, c is the n× 1 array of Coriolis and centrifugal terms, and f is the n× 1 array of
generalized forces. Term λλλ c contains the nc constraint reactions, which can be forces or moments depending on the kind of
velocity component constrained in wc. The generalized applied forces fa are known, and the interface forces fi are exchanged
with the other co-simulated subsystems.

The dynamics of nonsmooth systems is usually formulated at the impulse–momentum level for each time-step. In general, the
formulation for multibody systems with bilateral and unilateral constraints can be written as a mixed linear complementarity
problem (MLCP) [
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where v+ contains the unknown generalized velocities at the end of the time-step, h is the step-size, p = Mv+ h(fa + fi− c) is
known, λλλ

low
c and λλλ

upp
c are the lower and upper force bounds respectively. Matrix C is an r× r positive semi-definite diagonal

matrix with regularization terms if constraint regularization is used to cope with redundancy, and φφφ accounts for the constraint
violation in such a case. This force bounds are enforced through complementarity, so that the constraint velocity is defined to be
positive (wc≥ 0) if the force reaches the lower bound, or negative (wc≤ 0) if the force reaches the upper bound, and zero (wc = 0)
otherwise. This complementarity condition can be used to define both bilateral and unilateral constraints. Moreover, friction at
the contact interface can also be described with such conditions by using faceted approximations of the Coulomb model.
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Figure 1: Numerical experiments with a co-simulation setup of a hydraulic crane using an interface model.

3 Interface Models in Multibody Systems

The interface of the multibody system can be parametrized with the r velocity components wi = Dv, where D(q) is the r× n
interface Jacobian matrix. Then, the r interface force components can be arranged in array λλλ i, and used to define the generalized
interface force as fi = DTλλλ i. Using the parametrization given by wi, the dynamic equations of the IM can be written as

M̃iẇi = λ̃λλ i +λλλ i (4)

where M̃i is the effective mass matrix of the system at the interface, and λ̃λλ i is the effective force that takes into account the applied
forces fa and other Coriolis and centrifugal terms. However, the effective mass and force terms can change quite significantly in
nonsmooth systems due to contact detachment and stick-slip transitions. Therefore, we define them as

M̃i =
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where Pc = M−1AT
α
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force at the bound (or tight constraints wτ = Aτ v) are considered as applied forces in λ̃λλ i and do not affect the effective mass,
which is the case of detaching contact and kinetic friction.

4 Example

The model of a crane with two hydraulic actuators and a log gripper was used to illustrate the performance of the proposed IM in
a co-simulation setup. A total of 18 bodies and 22 joints constitute the model, which includes spherical, revolute, and prismatic
joints. The manoeuvre consists in grasping a log of 500 kg and lift it up to a certain height. For this, a desired velocity was
provided as an input of the PD controller of the valve displacement of the hydraulic system. The step-size of the hydraulic system
was 0.2 ms in all the numerical experiments, whereas several values were used for the step-size of the multibody system, and the
communication (or macro) step-size was set equal to the one of the multibody system. Fig. 1 shows the results of the numerical
experiments using the IM. The velocity and force of the first actuator are shown for different step-sizes of the multibody system.
The step-size was increased up to 16 ms without losing stability, which enabled simulation at interactive rates.

5 Conclusions

Keeping numerical stability in co-simulation setups can be challenging, especially if non-iterative schemes are used. Interface
models (IMs) improve stability and allow for using large step sizes, which makes the simulation suitable for real-time applica-
tions. Moreover, the proposed formulation for IMs of nonsmooth multibody systems can include unilateral contact and friction.
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