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Abstract: Adjoint-based optimization of design and control for multibody systems has been the
subject of rigorous research in recent years[1]. The novel contribution of this article is in the
development of an efficient adjoint methodology for optimal control of rigid multibody systems
by exploiting the technique of computing control in a reduced temporal space using appropri-
ate basis functions. Use of basis functions yields a substantial reduction in the required number
of control parameters which drastically improves computational performance. This methodol-
ogy also implements a robust ODE formulation which was recently developed for multibody
systems to overcome the drawbacks of DAE formulations. The closed-form equations for Jaco-
bians of the state transition and objective functions which are required for adjoint computation
have been derived for the ODE formulation using tensor algebra. Since the algorithm does
not distinguish between control and design parameters, it enables an integrated optimization
approach, wherein the design and control can be simultaneously optimized.
The problem statement for optimal control of a generic dynamic system can be stated in the
form of an constrained optimization case study [2].

min
u

ψ = w(x,ρ)|tf +
∫ tf

t0

g(x, ẋ,ρ,u) dt s.t. ẋ = f (x,ρ,u) (1)

Taking infinitesimal variations of the Lagrangian we have

δL = wρδρ
∣∣
tf
+ µTδx|t0 +

∫ tf

t0

[ (
gρ + gẋfρ + µ

Tfρ
)
δρ+

(
gu + gẋfu + µTfu

)
δu

]
dt (2)

yielding the adjoint equation along its boundary condition at the final time as µ̇ = −fT
x

(
µ+ gT

ẋ

)
−

gT
x and µ|tf = wT

x|tf . Now, we have δL = ⟨∇ρL, δρ⟩+ ⟨∇uL, δu⟩ where

∇ρLT = wρ

∣∣
tf
+ µTx′

0 +

∫ tf

t0

(gρ + gẋfρ + µ
Tfρ) dt ∇uLT = gu +

(
µT + gẋ

)
fu (3)

The control is parameterized as an explicit function of time using basis functions represented
by Bi(t) and their corresponding time-invariant coefficients ci where i = 1, 2, ..., r. Thus we
have u(t) =

∑r
i=1 ci Bi(t) =⇒ δu(t) =

∑r
i=1 δciBi(t). Now

δuL =
r∑

i=1

∫ tf

t0

(∇uL ·Bi) · δci dt =⇒ ∇ciLT =

∫ tf

t0

∇uLT ·Bi dt (4)

The ODE formulation [3] for multibody systems in independent coordinates v in the cen-
troidal form is given by

(
DTMD

)
v̈ = DT (MUBγ +Q) where B = (ΦqU)−1, D =



[I−UBΦq]V, U = Φq|q0 and V is the null space of UT. The identities relating the general-
ized coordinates q and v are qv = q̇v̇ = D, q̇v = Dqv̇D, Dq = − (UBqΦq +UBΦqq)V,
Bq = −BΦqqUB. Thus the Jacobians of state transition matrix can be computed as

fv̇ =

[
DTMD 0

0 I

]−1{
DT (MUBγv̇ +Qv̇)

I

}
fu =

[
DTMD 0

0 I

]−1{
DTQu

0

}
fv = −

[
DTMD 0

0 I

]−1 [ (
DTMD

)
v

0

0 0

]
f +

[
DTMD 0

0 I

]−1{ [
DT (MUBγ +Q)

]
v

0

}
A case study was implemented using the proposed methodology on a 1 DOF undamped spatial
pendulum starting in an unstable configuration (x = 0.1 m) and moving under the action of
gravity. External forces act at C.G. of the pendulum and the objective function is chosen such
that the optimization algorithm tries to bring the pendulum to rest. This can be done by using
penalties F, S, and R which need to be symmetric positive semi-definite real matrices and a
state error function e that needs to be minimized.

ψ = eTFe|tf +
∫ tf

t0

(
eTSe+ uTRu

)
dt = 108x2|tf +

∫ tf

t0

(
2× 108x2 + u2

)
dt (6)

15 linear basis functions were used for this study. The results have been shown in Figure 1.
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Figure 1: (a) Schematic. (b) Time History.

Conclusions
An efficient ODE-based adjoint methodology for optimization of multibody systems was pre-
sented and implemented on 1 DOF multibody system. For full-space control, typically the
number of control parameters is the number of timesteps in the simulation. The reduced space
technique substantially reduces the number of required parameters by using basis functions.
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