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1. Motivation 

• Development of efficient algorithms for multibody system dynamics 

 

• Augmented Lagrangian algorithms 

– Mature (25 years of development by the multibody community) 

– Efficient 

• Successfully used in real-time applications 

– Robust 

• Able to deal with redundant constraints 

• Good performance in systems with singular configurations, impacts, etc.  

 

• Augmented Hamiltonian algorithms 

– A subset of augmented Lagrangian algorithms 

– Relatively less known in the multibody community  
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1. Motivation 

• A relatively large number of augmented Lagrangian algorithms for 
multibody dynamics currently exists 

 

• Need for benchmarking and guidelines for algorithm selection and 
parameter tuning 

 

– Singular configurations 

• Demanding simulation problem 

• Numerical difficulties have been observed with existing algorithms 

• Simple benchmark problems available (e.g. IFToMM benchmark) 

 

– Identification of sources of numerical difficulties 

• Effect on simulation performance 

 

– Definition of guidelines for algorithm selection and tuning 
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2. Augmented Lagrangian algorithms 

• First used in multibody system dynamics in the 1980’s 

• Mechanical system defined by 

 

 

 

• Dynamics equations can be expressed as 

 

 

 
 

• Differentiation of kinematic constraints w.r.t. time 

generalized coordinates 

kinematic constraints (holonomic) 

(1a) 

(1b) 
System of n + m DAE’s 

Configuration 

level 

Velocity level Acceleration level 
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2. Augmented Lagrangian algorithms 

• The Lagrangian approach 

(2a) 

(2b) 
:  Set of m Lagrange multipliers 

System of n + m ODE’s, with n + m unknowns 

• The system can be expressed as 

(3) 

• Some problems 
 

– Solution drift (            ,               not imposed)      
 

– The leading matrix is singular if the Jacobian matrix is rank deficient  
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2. Augmented Lagrangian algorithms 

• A comment on natural coordinates 

– Natural coordinates were used for the modelling 

• Usually: position and orientation of a reference frame attached to each body 

• Natural coordinates: using reference points and vectors to describe the system 

– Consequences 

• The mass matrix is constant during motion 

• The Coriolis and velocity-dependent forces term vanishes from the equations 

• Generalized velocities are the derivatives w.r.t. time of the generalized coordinates 

+ rigid body constraint equations 
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2. Augmented Lagrangian algorithms 

• Penalty formulation (Bayo et al., 1988) 

– Starting point for the development of augmented Lagrangian algorithms 

– The kinematic constraints are replaced with mass-spring-damper systems 

 

 

 

 

 

 

– Reactions are made proportional to the violation of kinematic constraints 

 

 

 

 

 

(4) 

:  Penalty factor 

:  Stabilization parameters (Baumgarte) 



F. González 
Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations 

8/41 

2. Augmented Lagrangian algorithms 

• Penalty formulation (Bayo et al., 1988) 

– From Eqs. (4) and (2a) 

 

 

 

 

 

 

– System of equations with an n x n, SPD lead matrix 

– Solution drift under control 

– Able to deal with rank-deficient Jacobian matrices 

 

– Kinematic constraints are never perfectly satisfied 

– Choice of penalty factor affects the accuracy of the results 

 

 

 

 

 

(4) 

(2a) 

(5) 
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(6a) 

2. Augmented Lagrangian algorithms 

• Augmented Lagrangian algorithm (Bayo et al., 1988) 

– Starting from the penalty formulation 

 

 

 

 

– Lagrange’s multipliers are re-introduced in the dynamics equations 

 

 

 

 

 

 

(6b) 

– Their value is obtained in an iterative way 

 

 

 

 

 

 

 

 

– An iterative process is introduced in the solution, but the selection of the 
penalty factor becomes less critical 

– Mass-orthogonal projections can be used to remove the constraint violations 
completely at the configuration, velocity, and acceleration levels (Bayo and 

Ledesma, 1996) 
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2. Augmented Lagrangian algorithms 

• Augmented Hamiltonian algorithm (Bayo and Avello, 1994) 

– Based on Hamilton’s canonical equations  

– The canonical momenta are introduced as system variables, together with the 
generalized coordinates 

Canonical momenta Hamiltonian 

– The canonical equations for a constrained system can be expressed as 

(7) 
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2. Augmented Lagrangian algorithms 

• Augmented Hamiltonian algorithm (Bayo and Avello, 1994) 

– Following an approach similar to the one used for the augmented Lagrangian 
algorithm in Eqs. (6a) and (6b), the time derivatives of the generalized 
coordinates can be obtained as 

– The derivatives with respect to time of the canonical momenta are obtained 
explicitly from 

:  Set of m multipliers 

(8a) 

(8b) 

(8c) 
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2. Augmented Lagrangian algorithms 

• Integration formulas 

– Forward Euler 

• Explicit, single step 

– Newmark formulas 

• Implicit, single-step 

(9) 

(10) 
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

P2 

P3 

x 

y 

P1 

x 

y 

z 
P0 

P1 

P2 

P3 

P4 

P5 

Slider-crank mechanism 

Double four-bar linkage 6-link Bricard mechanism 

x 

y 

P0 

P1 P2 

P3 

y 

P4 

P5 

http://iftomm-multibody.org/benchmark/ 
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

– These systems result in a rank-deficient Jacobian matrix at some point during 
the motion 

 

 
 

– The penalty, augmented Lagrangian, and augmented Hamiltonian methods 
can carry out the numerical simulation in spite of that 

• The simulation can start from a singular configuration 
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

6-link Bricard mechanism 

x 

y 

z 
P0 

P1 

P2 

P3 

P4 

P5 

• Rank-deficient Jacobian stemming from redundant constraints, not singular configurations 

• The rank of the Jacobian matrix does not change during motion 

• All the algorithms were able to simulate its motion correctly 
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

P2 

P3 

x 

y 

P1 

Slider-crank mechanism 

• Singular configuration when rods are aligned 
on the y-axis 

• Jacobian matrix suddenly loses rank 

• The system gains one extra d.o.f. 

• Singular configuration as bifurcation point 

• Numerical problems observed with all the 
methods, for certain combinations of 
parameters  
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

P2 

P3 

x 

y 

P1 

Slider-crank mechanism 

P2 

P1, P3 

x 

y 

P2 

P1, P3 

x 

y 

P2 

P3 

x 

y 

P1 

Slider-crank motion 

Pendulum motion 
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

Double four-bar linkage 

x 

y 

P0 

P1 P2 

P3 

y 

P4 

P5 

• Singular configuration when rods are aligned 
on the x-axis 

• The system gains two extra d.o.f. 
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3. Singular configurations 

• Benchmark examples (from IFToMM examples library) 

Double four-bar linkage 

x 

y 
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P5 
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P0 
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P4 P2, P5 
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P4 
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3. Singular configurations 

• Enlarged Subspace of Admissible Motion (SAM) at singular configurations 

 
P2 

P3 

x 

y 

P1 

– One-d.o.f. system modelled with three generalized 
coordinates (x2, y2, x3) 

 

 

 

 
– Subspace of constrained motion (SCM) defined by the Jacobian matrix of the 

constraints 

 

Admissible velocities 

SAM has dimension 1 
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3. Singular configurations 

• In a singular configuration the Jacobian suddenly loses rank 

 
P2 

P1, P3 

x 

y 

SAM has dimension 2 now 

P2 

P1, P3 

x 

y 

P2 

P1, P3 

x 

y 

Slider-crank motion Pendulum motion 
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3. Singular configurations 

• Two velocity components can exist simultaneously in the singularity 

 
P2 

P1, P3 

x 

y 

– After the singularity only one can remain, because the 
Jacobian matrix recovers its original rank 

 

 

 

– The other component becomes a violation of the velocity-
level constraints 

• Not necessarily a “small” violation of constraints 

• Projections do not remove the secondary component in the 
singularity: it does not violate the constraints at that point 

 

 

 

– Secondary components may be introduced by the 
numerical integration process 

 

– Augmented Lagrangian methods transform constraint violations in reactions 

 

 

 

Impulsive discontinuities in reactions 
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3. Singular configurations 

• Introduction of impulsive discontinuities in reaction forces 

 
P2 
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y 
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3. Singular configurations 

• Introduction of impulsive discontinuities in reaction forces 

 
P2 

P1, P3 

x 

y 

 

– Effect of violation of configuration-level constraints 
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3. Singular configurations 

• Effects on simulation 

 

x-reaction at P0, during motion of the four-bar linkage Mechanical energy of slider-crank mechanism 
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4. Newton-Raphson iterative schemes 

• Requirements for the algorithm to meet 

– Able to keep the violation of kinematic constraints under a certain threshold 

– Robust enough to withstand impact forces 

 

• Algorithms with implicit integrators initially implemented in fixed-point 
iterative scheme 

– They tend to fail near singular configurations 

 

• Implementation in Newton-Raphson iterative scheme 

– Expected to show a more robust behaviour 

– Already done for augmented Lagrangian methods (although not in a general 
way) 

– New for augmented Hamiltonian algorithms 
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4. Newton-Raphson iterative schemes 

• Fixed-point iteration 

 

Dynamic Equations 

Predictor 

Dynamic Equations Corrector 
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4. Newton-Raphson iterative schemes 

• Newton-Raphson iteration 

– The dynamics equations are combined with the numerical integration 
formulas to obtain a system of nonlinear equations 

 

 

– The generalized coordinates at the next integration time-step become the 
system unknowns 

– The system is solved by means of Newton-Raphson iteration 

 

Tangent matrix RHS (residual) 

(11) 

(12a) 

(12b) 
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4. Newton-Raphson iterative schemes 

• Augmented Lagrangian algorithm in Newton-Raphson form 

– Proposed  in Bayo, 1996 and Cuadrado, 1997 

– General form not published yet 

 

• Numerical integration formulas: Newmark 

 

 

(13) 

• The integrator formulas are introduced in the augmented Lagrangian 
expressions (6) and equilibrium is established at time k+1 
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4. Newton-Raphson iterative schemes 

• Augmented Lagrangian algorithm in Newton-Raphson form 

– We obtain a system of non-linear equations 

 
(14) 

– With the approximated tangent matrix 

 
(15) 
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4. Newton-Raphson iterative schemes 

• Augmented Lagrangian algorithm in Newton-Raphson form 

– The original expressions can be simplified 

– Augmented Lagrangian of index-3 with projections of velocity and acceleration 

• Projections enforce               and    

 

 

 

 

 

– ALi3 algorithm (Cuadrado et al., 2000) 

 

 

 

(16) 

(17) 
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4. Newton-Raphson iterative schemes 

• Augmented Hamiltonian algorithm in Newton-Raphson form 

– New development 

 

• Numerical integration formulas: Trapezoidal rule 

 

 

(18) 

• The integrator formulas are introduced in the augmented Hamiltonian 
expressions (8) and equilibrium is established at time k+1 
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4. Newton-Raphson iterative schemes 

• Augmented Hamiltonian algorithm in Newton-Raphson form 

– The system of nonlinear equations has two parts now 

 

 

 

– The tangent matrix is evaluated as follows 

(19) 

(20) 
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5. Numerical simulations 

• Summary of tested algorithms 

– Penalty formulation 

• Integration with forward Euler 

• Integration with Newmark 

– Augmented Lagrangian algorithm (AL) 

• Integration with forward Euler 

• Integration with Newmark 

– Augmented Hamiltonian algorithm (AH) 

• Integrated with forward Euler 

• Integrated with trapezoidal rule 

– Augmented Lagrangian algorithm (Newton-Raphson) (ALNR) 

• Integrated with Newmark 

– Augmented Lagrangian algorithm (Newton-Raphson) with projections (ALi3) 

• Integrated with Newmark 

– Augmented Hamiltonian algorithm (Newton-Raphson) (AHNR) 

• Integrated with trapezoidal rule 
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5. Numerical simulations 

• Simulation of benchmark examples and comparison of algorithms 

– Elapsed time in the simulation of a 10 s motion 
 

• Best results for double four-bar linkage 

 

 

 

Method Integrator h (ms) a w x Elapsed time (s) 

Penalty FE 0.02 107 30 1 2.5 

AL FE 0.005 107 10 1 12.21 

AH FE 1 109 0.1 1000 0.07 

Penalty TR 5 108 25 1 0.04 

AL TR 5 108 20 1 0.05 

AH TR 5 109 0.1 1000 0.10 

ALNR TR 5 107 100 1 0.05 

AHNR TR 5 108 1 10000 0.08 

ALi3 TR 10 109 - - 0.02 
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5. Numerical simulations 

• How to adjust the algorithm parameters? 
 

• Stabilization parameters w and x 

 

 
 

– Constraint violations should be kept low especially at the configuration level 

 

 

Constraint violations with AL, a = 107, x = 1, h = 1ms 
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5. Numerical simulations 

• How to adjust the algorithm parameters? 
 

• Penalty factor a 

 
Energy drift with h = 5 ms, x = 1 – Lagrangian algorithms 

Penalty, trapezoidal rule AL, trapezoidal rule ALNR, trapezoidal rule 
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5. Numerical simulations 

• How to adjust the algorithm parameters? 
 

• Penalty factor a 

 
Energy drift with h = 5 ms, w = 1 – Hamiltonian algorithms 

AH, trapezoidal rule AHNR, trapezoidal rule 
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5. Numerical simulations 

• How to adjust the algorithm parameters? 
 

• Penalty factor a 

 
Energy drift with h = 5 ms, w = 1 – Hamiltonian algorithms 

Fixed point Newton-Raphson 

Time history of energy drift, a = 108 
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6. Conclusions 

• Singular configurations cause numerical difficulties in forward-dynamics 
simulations 

– Sudden enlargement of SAM at singularities 

– With augmented Lagrangian methods this gives rise to 

• Discontinuities in reaction forces and  mechanical energy 

• Possible changes of branch and eventual failure of the simulation 

 

– Augmented Lagrangian methods tested in the simulation benchmark examples 

• Newton-Raphson forms of the algorithms developed and implemented 

• Hamiltonian methods showed good energy-conserving properties with forward 
Euler integration 

 

– Guidelines for the tuning of algorithm parameters 

• Dependent on the problem and integrator used 

• Violation of configuration-level constraints should be kept below a threshold 

• Newton-Raphson methods feature a more robust behaviour 
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