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1. Motivation

 Development of efficient algorithms for multibody system dynamics

 Augmented Lagrangian algorithms
— Mature (25 years of development by the multibody community)
— Efficient
* Successfully used in real-time applications
— Robust
* Able to deal with redundant constraints
* Good performance in systems with singular configurations, impacts, etc.

 Augmented Hamiltonian algorithms
— A subset of augmented Lagrangian algorithms
— Relatively less known in the multibody community
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1. Motivation

* Arelatively large number of augmented Lagrangian algorithms for
multibody dynamics currently exists

* Need for benchmarking and guidelines for algorithm selection and
parameter tuning

— Singular configurations
* Demanding simulation problem
* Numerical difficulties have been observed with existing algorithms
* Simple benchmark problems available (e.g. IFToMM benchmark)

— |dentification of sources of numerical difficulties
» Effect on simulation performance

— Definition of guidelines for algorithm selection and tuning
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2. Augmented Lagrangian algorithms

* First used in multibody system dynamics in the 1980’s
* Mechanical system defined by

n  generalized coordinates

No)

v
K
]
o

m kinematic constraints (holonomic)

* Dynamics equations can be expressed as

(1a) Mq+c=f+1f.
System of n + m DAE’s

(1b) ®=0

e Differentiation of kinematic constraints w.r.t. time

d/dt , d/dt L
P =0 P, q+ P =0 P,q+Pq+P: =0
Configuration Velocity level Acceleration level
level
IS
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2. Augmented Lagrangian algorithms

e The Lagrangian approach

(2a) Mg+c=f+@A

(2b) P+ Pgq+ Py =0
a4 a9 t A Set of m Lagrange multipliers

System of n + m ODE’s, with n + m unknowns

* The system can be expressed as

(3) M @ ]1[q]_ f-c
P, O AT | —Pgq— P

 Some problems
— Solution drift (® = 0, ® = 0 not imposed)

— The leading matrix is singular if the Jacobian matrix is rank deficient
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2. Augmented Lagrangian algorithms

* A comment on natural coordinates
— Natural coordinates were used for the modelling

* Usually: position and orientation of a reference frame attached to each body
* Natural coordinates: using reference points and vectors to describe the system

T
q=[$ y 2z € €1 €2 63]

q:[l“l i Z1 T2 Y2 Z2 Tyl Yol Rwl T2 Yu2 Zu2]

+ rigid body constraint equations

— Consequences
* The mass matrix is constant during motion
* The Coriolis and velocity-dependent forces term vanishes from the equations
* Generalized velocities are the derivatives w.r.t. time of the generalized coordinates
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2. Augmented Lagrangian algorithms

* Penalty formulation (Bayo et al., 1988)
— Starting point for the development of augmented Lagrangian algorithms
— The kinematic constraints are replaced with mass-spring-damper systems

r“*- mQ2

mg
— Reactions are made proportional to the violation of kinematic constraints
(4) A=« (<I> + 2£w<i> + w2<I>)

< : Penalty factor
&, w: Stabilization parameters (Baumgarte)
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2. Augmented Lagrangian algorithms

* Penalty formulation (Bayo et al., 1988)
— From Egs. (4) and (2a)

(2a) Mg ="1f— <I>g)\
(4) A=« (‘IJ + 2w + w2<I>)

[
>

)  (M+®Tad,)§=f—oTa (rbqq 4B, + 2Awd + w2<I>)

— System of equations with an n x n, SPD lead matrix
— Solution drift under control
— Able to deal with rank-deficient Jacobian matrices

— Kinematic constraints are never perfectly satisfied
— Choice of penalty factor affects the accuracy of the results

.
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2. Augmented Lagrangian algorithms

 Augmented Lagrangian algorithm (Bayo et al., 1988)
— Starting from the penalty formulation

6a) (M +®Ta®q)d=1f—dfa(dga+ by +26wd +w?®) ~BLaX’
(6b) L=t («'1': +2wd + w2<1>)

— Lagrange’s multipliers are re-introduced in the dynamics equations
— Their value is obtained in an iterative way

— An iterative process is introduced in the solution, but the selection of the
penalty factor becomes less critical

— Mass-orthogonal projections can be used to remove the constraint violations

completely at the configuration, velocity, and acceleration levels (Bayo and
Ledesma, 1996)
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2. Augmented Lagrangian algorithms

* Augmented Hamiltonian algorithm (Bayo and Avello, 1994)
— Based on Hamilton’s canonical equations

— The canonical momenta are introduced as system variables, together with the
generalized coordinates

oL

P= — » H=p'q-L
dq

Canonical momenta Hamiltonian

— The canonical equations for a constrained system can be expressed as

OH OH
=22, p=22 ¢ 1 aTA
(7) 4= 73 P = 5 + @]

.
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2. Augmented Lagrangian algorithms

* Augmented Hamiltonian algorithm (Bayo and Avello, 1994)

— Following an approach similar to the one used for the augmented Lagrangian
algorithm in Eqgs. (6a) and (6b), the time derivatives of the generalized
coordinates can be obtained as

t
(8a)) (M+ @ a®y)q=p— S o ((I)t + 26w® + w? f <I>dt) ~®0

to
. t ) )
(8b) Oi+1 =0; +« (‘]5’ + 26wP + WQ/ i’[)dt) o : Set of m multipliers
to é‘ f— A

— The derivatives with respect to time of the canonical momenta are obtained
explicitly from

t
(8c) p="Ff+& « <<I> + 26 w®P + w? / cﬁdt) +P.o
to

3 4 .
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2. Augmented Lagrangian algorithms

* Integration formulas

— Forward Euler
* Explicit, single step

qk-l—l — qk + hqk

) k41 k -k
Q"' =q"+hq
— Newmark formulas
* Implicit, single-step
I - k+1 e g k1
" =q"+ 3 (@ +§")
(10) -
h . )
qk:+1 :qk_|_§ (qk_|_qk—|-1)

@ MCGill F. Gonzélez ;z—f.
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

P, http://iftomm-multibody.org/benchmark/

L/ 5

PI
Slider-crank mechanism )
X
P, P
4 g? P5
p, =
D
&
P3
P3 P5
P4

Double four-bar linkage 6-link Bricard mechanism
ng McGill F. Gonzélez = <
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

P P, P,
y
v
P, - P, P,

— These systems result in a rank-deficient Jacobian matrix at some point during
the motion

EA BRI Y

— The penalty, augmented Lagrangian, and augmented Hamiltonian methods
can carry out the numerical simulation in spite of that

* The simulation can start from a singular configuration

3 4 .
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

P,

P,

6-link Bricard mechanism

* Rank-deficient Jacobian stemming from redundant constraints, not singular configurations
* The rank of the Jacobian matrix does not change during motion
* All the algorithms were able to simulate its motion correctly

3 4 .
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

,33 "\

Slider-crank mechanism

P,

_____________ B

* Singular configuration when rods are aligned
on the y-axis

* Jacobian matrix suddenly loses rank

* The system gains one extra d.o.f. /\
* Singular configuration as bifurcation point
* Numerical problems observed with all the

methods, for certain combinations of
parameters

. 4 .
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

P,

A 4

Ps P, y

L/ \
o ~ h

X

Slider-crank mechanism . .
Slider-crank motion

P1’P3

't PP

—>
X

Pendulum motion

ng MCGlll F. Gonzélez ;z—:
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

P, P, P,
Y
7%
PO X P3 P5

Double four-bar linkage

* Singular configuration when rods are aligned
on the x-axis

* The system gains two extra d.o.f.

3 4 ~ =
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3. Singular configurations

* Benchmark examples (from IFToMM examples library)

P, P, P,

PO X P3 P5
P P g
? ? P, P, P,

Double four-bar linkage

y
" g Pigi Piéj* P4O B Py P, Py P, Ps
L. % N
P,
ng McGill F. Gonzélez = <
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3. Singular configurations

* Enlarged Subspace of Admissible Motion (SAM) at singular configurations

P — One-d.o.f. system modelled with three generalized
coordinates (x,, y,, X3)

P, T3 t+ys — 12 =0

------------ kS (w3 —22)* +y3 =12 =0

— Subspace of constrained motion (SCM) defined by the Jacobian matrix of the
constraints

To
. 233'2 2 2 0 . -
@SC — 2 2y 2 y2 — (Pflcqsc — O
(z2 —x3) 299 (23 — z2) s
. ) 1 Admissible velocities
Pt = ke * g =) —T2 /Y2
115’3/ (233 — 5132) SAM has dimension 1
5‘%{: MCGlll F. Gonzélez = <
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3. Singular configurations

* In asingular configuration the Jacobian suddenly loses rank

P
O ’ — - ~ @SC
T3 = T = 0 > q
SAM has dimension 2 now
1
g R - . SC
e g qa i =M 0
x 2
P2
— O
To =M To = M2
. y
T3 = 2771 Py, Ps
< o

Slider-crank motion

21/41

10 20 0
ts | 0 20 0

1
+n2 | 0 | =maqyg +172q.5
0
P,
(@)
P, P

X

Pendulum motion
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3. Singular configurations

* Two velocity components can exist simultaneously in the singularity

> m—E — Secondary components may be introduced by the
io = numerical integration process
Tg =12 — After the singularity only one can remain, because the
Jacobian matrix recovers its original rank
L Y p.P
T3 = 21 o — The other component becomes a violation of the velocity-
b x level constraints

* Not necessarily a “small” violation of constraints

* Projections do not remove the secondary component in the
singularity: it does not violate the constraints at that point

— Augmented Lagrangian methods transform constraint violations in reactions

A=« ((I) + 26wP + wzq)) > Impulsive discontinuities in reactions

. -

T McGill [ oo -
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3. Singular configurations

* Introduction of impulsive discontinuities in reaction forces
— P 50
Q o\
To =11 z
T = 12 =
<3
. y &
T3 = 2771 Py, Py |_q|_)
4 :x 5 — 1] = 0
s \ - ey =—-10"% m/s
g -50 - . ' ooooo‘}’]2:—2-10_4 m/S
o —4
\’ - oMy =—5-10"" m/s
_75 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01
Time (s)

y-reaction at P,, after starting from the singular configuration; n, =2 m/s

@ MCGill F. Gonzélez ;z—f.
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3. Singular configurations

* Introduction of impulsive discontinuities in reaction forces
— Effect of violation of configuration-level constraints

P
_ 2 P ~
(@) .
U (I)q:q)Q(q+6) g (I)qq%o
L2 =1
T2 =12 100
> 75t
y £ \
OO P, P Z .
T3 = 2m v £ o 50 | |
—> = oo
. = g_ 25 r o ~°o\ -
E F , ; L]
o 0 Y, = /..'. ’ /
g 25 | ' ° s ¢ = ()
2 \ 10-5
= 50 t i . - «c=10""m
g -75 F \ ’ 00001622-10_51’_[1
[5) °
© 00t - ce=5-10""m
_125 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01
Time (s)

y-reaction at P,, after starting from the singular configuration (1, =0)
[« 41 . F. Gonzalez —
? McGill =

Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations UNIVERSIDADE DA CORURNA



25/41

3. Singular configurations

e Effects on simulation

400 14
= = —
%cj 200 Ei?
: E RN N
o 0 N '\f"" - =
= 2
12
R 5
> 200 |- §
Q
= 400 | L __1————“————1_________1__________
=]
=
2
é -600 1 1 1 1 10 ! ! ! !
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
x-reaction at Py, during motion of the four-bar linkage Mechanical energy of slider-crank mechanism
P, P, 24
y
P, i P, P;

B McGill ool o | "
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4. Newton-Raphson iterative schemes

* Requirements for the algorithm to meet
— Able to keep the violation of kinematic constraints under a certain threshold

— Robust enough to withstand impact forces

e Algorithms with implicit integrators initially implemented in fixed-point

iterative scheme
— They tend to fail near singular configurations

* Implementation in Newton-Raphson iterative scheme
— Expected to show a more robust behaviour
— Already done for augmented Lagrangian methods (although not in a general

way)
— New for augmented Hamiltonian algorithms

.

T McGill [ oo -
v Behaviour of augmented Lagrangian algorithms in the simulation of multibody systems with singular configurations UNIVERSIDADE DA CORUNA



27/41
4. Newton-Raphson iterative schemes

* Fixed-point iteration

k .
Q4" | —— | DynamicEquations | —s e ——.
' Predictor
q
>
[ Dynamic Equations ] —_— qiﬁrl . Corrector —_

ng MCGlll F. Gonzélez ;z—:
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4. Newton-Raphson iterative schemes

* Newton-Raphson iteration

— The dynamics equations are combined with the numerical integration
formulas to obtain a system of nonlinear equations

(11) g(q,q)=0

— The generalized coordinates at the next integration time-step become the
system unknowns

— The system is solved by means of Newton-Raphson iteration

dg (q,q .
(12a) [%} AQiy1 = — [g (q, Q)]i
q i
Tangent matrix RHS (residual)

(12b) Qi+1 = q; + Ag;+1

.
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4. Newton-Raphson iterative schemes

 Augmented Lagrangian algorithm in Newton-Raphson form
— Proposed in Bayo, 1996 and Cuadrado, 1997
— General form not published yet

* Numerical integration formulas: Newmark

. - o Y
— hi{-L—1
qr+1 = Bth—i—l qd; qir — thk—'_ (5 )Qk‘|‘ (25 )q
(13) -
. _ 1 5 = 1 L1 1 n i 1) &

* The integrator formulas are introduced in the augmented Lagrangian
expressions (6) and equilibrium is established at time £+1

(M+ ®La®q) G = £ — ®La (Dqq+ b, + 26w +w2®) ~@Tax”
I

3 4 .
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4. Newton-Raphson iterative schemes

 Augmented Lagrangian algorithm in Newton-Raphson form
— We obtain a system of non-linear equations

. 1 =
T - Y " . ¥ ~ )
@, [‘I’q (ﬁ_hqk-i-l - qk) + Py + 2wé (‘I’q (@Qk-i—l = qk) ~+ ‘I’t) +w ‘I)]
—HI)E)\Z_H =0

— With the approximated tangent matrix

&S

C = —0f /94

~ 2

—|—<I>Eoz<I)q (1 + 2wévh + w25h2) —I—‘I’gaqu ~h
+@Ta (m? (c"pt) + 2wEBh? (@t)q)
q

3 4 .
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4. Newton-Raphson iterative schemes

 Augmented Lagrangian algorithm in Newton-Raphson form
— The original expressions can be simplified

— Augmented Lagrangian of index-3 with projections of velocity and acceleration
* Projections enforce ®=0and =0

(16) g(q,a) = Magy1 + B02®L, | (Aiy + a®rp) — Bh2f s — BA2MG,, = 0

[dg(%fl)

(17) iq

] >~ M + yhC + Sh? (®5aPq + K)

— ALi3 algorithm (Cuadrado et al., 2000)

3 4 .
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4. Newton-Raphson iterative schemes

* Augmented Hamiltonian algorithm in Newton-Raphson form
— New development

* Numerical integration formulas: Trapezoidal rule

. 2 ~ ~ 2 .
dr+1 = EQk-l—l — gy qir = EQk + gk
(18) =
: 2 ~ ~ 2 )
Pr+1 = Epk;+1 — Pk Pr = Epk + Pk

* The integrator formulas are introduced in the augmented Hamiltonian
expressions (8) and equilibrium is established at time £+1

t
(M + 8Ta®,)§ = p— 3Ta (q:t 2w+ <I>dt) S

to
t
o 5T - 2 =T .
p—f—l—qua(q)—l—2§w¢’—l—w /tq)dt)—i—q)qa > 82
0
T
51? MCGlll F. Gonzélez ;z-:.‘.
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4. Newton-Raphson iterative schemes

* Augmented Hamiltonian algorithm in Newton-Raphson form
— The system of nonlinear equations has two parts now

(19) gh(Y)_{E;E§§]_0§ where y—[g}

— The tangent matrix is evaluated as follows

" dg1 (y) dgi(y) T
dgn (y) | _ dq dp
(20) [ dy ] | dga(y) dego(y)
| dq dp |

3 4 .
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5. Numerical simulations

* Summary of tested algorithms
— Penalty formulation

* Integration with forward Euler
* Integration with Newmark
— Augmented Lagrangian algorithm (AL)
* Integration with forward Euler
* Integration with Newmark
— Augmented Hamiltonian algorithm (AH)
* Integrated with forward Euler
* Integrated with trapezoidal rule
— Augmented Lagrangian algorithm (Newton-Raphson) (ALNR)
* Integrated with Newmark
— Augmented Lagrangian algorithm (Newton-Raphson) with projections (ALi3)
* Integrated with Newmark
— Augmented Hamiltonian algorithm (Newton-Raphson) (AHNR)
* Integrated with trapezoidal rule

3 4 .
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5. Numerical simulations

* Simulation of benchmark examples and comparison of algorithms
— Elapsed time in the simulation of a 10 s motion ) - 4
e Best results for double four-bar linkage P s n AE<O01J

Penalty

AL FE 0.005 10/ 10 1 12.21
AH FE 1 10° 0.1 1000 0.07
Penalty TR 5 108 25 1 0.04
AL TR 5 108 20 1 0.05
AH TR 5 10° 0.1 1000 0.10
ALNR TR 5 10/ 100 1 0.05
AHNR TR 5 108 1 10000 0.08
ALi3 TR 10 10° - - 0.02

B McGill Feorze o o =
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5. Numerical simulations

* How to adjust the algorithm parameters?
* Stabilization parameters wand &

t
)\:a(CIJ+2§w¢I>—|-w2<I>) aza(¢)+25wq)+w2/ <I>dt)
t

0

— Constraint violations should be kept low especially at the configuration level

1.0E+00 1.0E+00
= 1.0E-02 = 1.0E-02 A I
g g
£ 1.0E-04 £ 1.0E-04
'E 1.0E-06 'E 1.0E-06
= =
Q Q
“ 1.0E-08 | © 10E-08 |

w = 25 N B
1.0E-10 ' ' POs vel, ace 1.0E-10
0 2 1 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Constraint violations with AL, =107, £=1, h = 1ms

. -

B McGill Foerzle o | o o -
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5. Numerical simulations

* How to adjust the algorithm parameters?

* Penalty factor « |£W /
Py Ps
A 77

Energy drift with h = 5 ms, £=1 — Lagrangian algorithms AFE <0.11]
2.50 o o o o ° oD 25 o o o o ° oD 25 ° ) ° ° * b
2 o o o o o 0.1 2 o o o o o 0.1 2 ° ° ° ° e 0.1
?n 1.5 o o ] o o 0.08 En 1.5 e e ) @ ) 0.08 ’g} 1.5 ) ) e @ (€] 0.08
L Q 5]
B 0.06 B 0.06 B 0.06
éﬁ 1 o o] o o} 0 (_%0 1 o o] o] o 0 230 1 o o o o) o
0.04 0.04 0.04
0.5 o o o o o 0.02 0.5 fe) o o o o 0.02 0.5 fe) o o o o 0.02
0o ) 0 0 0 0 0
6 6.5 7 7.5 8 8.5 6 6.5 7 7.5 8 8.5 6 6.5 7 7.5 8 8.5
log (alpha) log (alpha) log (alpha)
Penalty, trapezoidal rule AL, trapezoidal rule ALNR, trapezoidal rule
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5. Numerical simulations

* How to adjust the algorithm parameters? s

* Penalty factor

P&nﬁ- - *
Energy drift with h = 5 ms, @ =1 — Hamiltonian algorithms
6 °® ) ° o o o
0.12 0.12
5.5 ] [ ® [ o o
0.1 0.1
5 [ ] [ ] [ ] [ ] [} o]
0.08 4.5 ® ° ° ° ° e 0.08
@ 0.06 o e ® & & % 006
2 2
3.5 (] ® ] [ ° °
0.04 0.04
3 o o o o o) ®
0.02 s 6 6 e e e e 002
0 2 o 0
7 8 9 10
log (alpha) log (alpha)
AH, trapezoidal rule AHNR, trapezoidal rule

Sgi MCGIH F. Gonzalez %
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5. Numerical simulations

* How to adjust the algorithm parameters?

* Penalty factor « |§W /
Py Ps
A 77

Energy drift with h = 5 ms, @ =1 — Hamiltonian algorithms AFE <0.11]

| 0E-01 Fixed point | 0E-01 Newton-Raphson

0.0E+00 | 0.0E+00 e o~ ~ -~ ~
S -1.0E-01 S -1.0E-01 |
o= o=
€ 2.0E-01 | E 2.0E-01 |
7 z
Lﬁ -3.0E-01 r Lﬁ -3.0E-01 |

4 0E-0] | =log&)=0 == =1log(&)=05 4 0E-0] | = log(§)=3.5 == =log(&)=4

senes log(a): ] == o« ]_Og(a): 1.5 seses ]_Og(EJ):gI_S - e log(é)zj
-5.0E-01 : ' ' ' -5.0E-01 ' ' ' '
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Time history of energy drift, o =108
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6. Conclusions

* Singular configurations cause numerical difficulties in forward-dynamics
simulations
— Sudden enlargement of SAM at singularities
— With augmented Lagrangian methods this gives rise to

* Discontinuities in reaction forces and mechanical energy
* Possible changes of branch and eventual failure of the simulation

— Augmented Lagrangian methods tested in the simulation benchmark examples
* Newton-Raphson forms of the algorithms developed and implemented

* Hamiltonian methods showed good energy-conserving properties with forward
Euler integration

— Guidelines for the tuning of algorithm parameters
* Dependent on the problem and integrator used
* Violation of configuration-level constraints should be kept below a threshold
* Newton-Raphson methods feature a more robust behaviour

3 4 .
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